Catalog
2014-15

Electrical and Computer Engineering

Gordon Silverman, Ph.D.
Chair, Department of Electrical and Computer Engineering
Director, Graduate Program

Mission

The Master of Science in Electrical Engineering and the Master of Science in Computer Engineering degree programs are designed to provide a higher degree of mastery of electrical and computer engineering fundamentals, emphasizing practical applications, thereby expanding the students' technological horizons and preparing professionals for advanced level positions and for admission to doctoral programs.

Objectives

The objective of these programs is to prepare graduates for successful and dynamic professional careers through a course of study that provides:

  1. a strong grasp of electrical engineering and computer engineering fundamentals through a diverse and flexible curriculum
  2. skills in practical applications, contemporary industrial needs and emerging technologies
  3. a foundation for increasing professional responsibilities or continued study at the doctoral level 

Admission Requirements

Electrical Engineering Degree

Applicants must possess one of the following:

  1. A baccalaureate degree in electrical engineering from a program accredited by the Engineering Accreditation Commission of ABET, Inc., or from a recognized foreign institution.
  2. A baccalaureate degree in another area of engineering, physics, or mathematics.

Applicants who have a baccalaureate degree in another area of engineering, physics, or mathematics may be admitted into the program provided they complete undergraduate prerequisites specified by the Graduate Program Director. These courses must be completed with a minimum grade point average of 3.00 with no grade lower than C. These courses will not satisfy any requirements for the Master of Science in Electrical Engineering degree. Generally, students must complete prerequisite courses before they are permitted to register for graduate courses. Exceptions require the recommendation of the Graduate Program Director and the approval of the Dean of Engineering.

Computer Engineering Degree

Applicants must possess one of the following:

  1. A baccalaureate degree in computer (or electrical) engineering from a program accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology or from a recognized foreign institution.
  2. A baccalaureate degree in another area of engineering, physics or mathematics.

Applicants who have a baccalaureate degree in another area of engineering, mathematics, or physics may be admitted if they have a background which includes nine credits of calculus and three credits of probability. They must also complete undergraduate courses in Computer Programming, Introduction to Digital Systems, and Microcomputers with a minimum grade point average of 3.0 with no grade lower than C (these courses will not satisfy any requirements for the Master of Science in Electrical Engineering degree). Generally, students must complete prerequisite courses before they are permitted to register for graduate courses. Exceptions require the recommendation of the Graduate Program Director and the approval of the Dean of Engineering.

Degree Requirements

A student must complete a minimum of thirty credit hours of graduate course work. Specific requirements follow:

Electrical Engineering Degree

ECEG 701Signals, Systems and Transforms I3
ECEG 702Signals, Systems and Transforms II3
One of the following:3
Radiation and Optics
Probability and Stochastic Processes
Four courses chosen from Electrical Engineering and Electrical and Computer Engineering12
Three courses chosen from Electrical Engineering, Electrical and Computer Engineering, and Computer Engineering9
Total Credits30

Electives may also be selected from the Graduate Core courses with the advice and approval of the Graduate Program Director.

Any modifications to program requirements must be approved by the Graduate Program Director.

Computer Engineering Degree

ECEG 520Computer Architecture I3
ECEG 727Computer Networks3
One of the following:3
Software Engineering
Embedded Systems
Four courses chosen from Electrical and Computer Engineering and Computer Engineering12
Three courses from any offerings by the Electrical and Computer Engineering department, or any Graduate Core course9
Total Credits30

Any modifications to program requirements must be approved by the Graduate Program Director.

Courses

ECEG 520. Computer Architecture I. 3 Credits.

Evolution of computer architecture from the Von Newmann concepts and the CISC machines to the RISC machines. Hardware and Software design methods. Processor design; Data representation and instruction sets. Control design: Hardware and Microprogrammed. Memory organization:Virtual segmentation and cache; system organization: Bus control, I/O and operating systems.

ECEG 547. Optical Information Processing Systems. 3 Credits.

Response of linear spatially invariant systems; singal detection by matched filtering, mutual coherence, transform properties of linear optical imaging systems; optical information processing and filtering; linear holography.

ECEG 548. Fiber Optics Communication. 3 Credits.

Optical fiber structures and physical characteristics; electromagnetic waveguiding properties and modes, fiber materials, loss mechanisms, and dispersion. Semiconductor laser and LED sources and photodetectors. Connectors, Fiber measurements, communicaiton aspects of fiber transmission. Fiber system examples and design procedures.

ECEG 701. Signals, Systems and Transforms I. 3 Credits.

Description and analysis of continuous-time signals and systems in the time and the frequency domains; Laplace transform; inversion of transforms by complex integration; application to lumped and distributed parameter systems; analysis of continuous-time linear systems using state space techniques; controllability and observability; stability analysis.

ECEG 702. Signals, Systems and Transforms II. 3 Credits.

Discrete-time signals and systems; discrete convolution; sampling and quantizing;Z-transform; discrete Fourier transform; Fast Fourier transform; state space techniques for discrete-time systems; controllability and observability; stability.

ECEG 706. Radiation and Optics. 3 Credits.

Radiation and simple radiating systems, wave optics, interference and diffraction: first order and higher order coherence functions; Fourier optics, properties of coherent optical beams.

ECEG 709. Linear Mathematical Methods. 3 Credits.

Matrix calculations; linear systems and linear vector spaces; operators and their representation; function of operators and matrices; systems of differential equations; Eigen function representations; electrical engineering applications.

ECEG 710. Probability and Stochastic Processes. 3 Credits.

Random variables; distribution and density functions; functions of random variables; random processes; stationarity, ergodicity; correlation functions and power spectra; noise theory; system analysis with stochastic inputs; Gaussian, Markov and Poisson processes.

ECEG 715. Power Systems. 3 Credits.

Analysis, design and applications of analog integrated circuits. Operational amplifiers, voltage regulators, VCOs, phase locked loops and circuits for consumer electronics are considered. Design principles, including feedback theory and computer aided design are investigated and implemented in computer calculations.

ECEG 721. Embedded Systems. 3 Credits.

Design of embedded systems including system level modeling/specification, and architecture synthesis, compilation for area/power/performance, code compression, scheduling and real-time operating systems, and verification and functional validation of embedded systems. Case studies and platform-based design encompassing microcontrollers/digital signal processors, distributed computing and peripherals.

ECEG 722. Switching and Automata Theory. 3 Credits.

Analysis and synthesis of finite state machines;Turing and universal machines; information lossless machines; modular realization of machines; introduction to machine languages and computability.

ECEG 723. Software Engineering. 3 Credits.

The evolution of programming from art to science. Program design tools and techniques; structured programming and modular design; complexity, storage, and processing-time analysis; program testing and debugging; software reliability, repair and availability.

ECEG 724. Computer Architecture II. 3 Credits.

Computer Systems; multi processors and pipelined processors; array processors; computer networks; techniques for analysis of computer systems.

ECEG 725. Microprocessor Systems. 3 Credits.

Detailed study of the 8086 and 68000 families of 16-bit microprocessors, including their architecture, instruction sets, programming, interfacing, and interrupt handling. Applications to communications, control, and instrumentation. Selected additional topics such as bit-slice microprocessors and graphics processors.Prerequisite or Co-requisite:ECEG 520 or equivalent or approval of Instructor.

ECEG 726. Transmission of Digital Data. 3 Credits.

The Architecture of Digital DataTransmission Systems. The protocols:TCP/IP models.The physical layer:Wire, cable, fiber, terrestrial microwave and satellite microwave.The key concepts: bandwidth, noise, channel capacity and error detection and correction. The applications:modulation and modems. Multiplexing: FDM, slotted TDM, and statistical TDM.The data link: asynchronous and synchronous transmission, circuit switching, packet switching.

ECEG 727. Computer Networks. 3 Credits.

A structured coverage of Data and Computer Communications Networks. Protocols from the physical and data link layers to the applications layer. Network modeling and fundamentals of performance analysis. Time delay and reliability. Design issues, tools, and procedures regarding capacity assignments, terminal assignment, and switching node location. Routing. Examples from high speed Local Area Networks.

ECEG 728. Operating Systems. 3 Credits.

A study of the modular design of operating systems; the concept of interrupts, multiple processors and I/O programming; memory management techniques, demand paging and virtual memory; job scheduling algorithms, race conditions between processes; file systems, analytic tools for the evaluation of operating systems. Prerequisite: ECEG 520 or equivalent.

ECEG 729. Artifical Intelligence. 3 Credits.

Computer-based systems with the potential to learn, comprehend, interpret, and arrive at conclusions in a manner considered intelligent if a person was making decisions. Topics will be taken from expert systems, fuzzy logic, and neural nets with emphasis on machine applications.

ECEG 730. Compiler Design.. 3 Credits.

Overview of compilers; programming languages and the syntactic specification of programming languages; lexical analysis, parsing techniques; top down parsing; recursive descent parsing; shift-reduce parsing; error recovery techniques; code generation and optimization; design and implementation of a compiler carried out as a class project.

ECEG 731. Control Systems. 3 Credits.

Multivariable systems; controllability and observability; observer design and pole assignment; stability analysis.

ECEG 732. Optimal Control Theory. 3 Credits.

Performance measures: dynamic programming and its application to optimal control problems; calculus of variations; minimum principle; numerical techniques for finding optimal controls and trajectories. Prerequisite:ENGG 630.

ECEG 733. Digital Control System Analysis and Design. 3 Credits.

State-space representation of discrete-time systems. Stability, observability, controllability. Digital controller design using transform techniques. Statespace design methods.

ECEG 735. Direct Energy Conversion. 3 Credits.

Principles of energy conversion; thermoelectric, photovoltaic, and thermionic generators; magneto-hydodynamic power generators: solar and nuclear energy conversion.

ECEG 736. Power Systems I. 3 Credits.

Steady state operation of electric power systems: power network representation; load flow analysis; economic dispatch and steady state control of energy systems.

ECEG 738. Power Systems II. 3 Credits.

Analysis of faulted power systems; symmetrical and asymmetrical systems; transient stability, emergency control and system protection. Prerequisite: ECEG 736 or approval of Instructor.

ECEG 740. Electro-Optics. 3 Credits.

Propagation of rays and beams, optical resonators; theory of laser oscillation; modulation of laser beams; optical detection.

ECEG 741. Quantum Electronics. 3 Credits.

Interaction of radiation with matter, spontaneous and simulated emission and absorption; semi-classical theory of lasers; traveling wave and cavity lasers; laser saturation; noise limitation of light detectors and amplifiers.

ECEG 744. Signal Detection and Estimation. 3 Credits.

Hypothesis testing; decision criteria: North and Wiener filtering; detection and estimation of signals with known and random parameters in white and colored Gaussian noise; recursive estimation of constant and time-varying signal parameters; Kalman-Bucy filtering; applications to communication systems, radar and biological signal processing. Prerequisite: ECEG 710.

ECEG 746. Digital Signal Processing. 3 Credits.

Discrete time signals and systems analysis' infinite and finite impulse response digital filter design techniques, random discrete time signals and spectral analysis, detection and estimation of signals in noise Kalman filters.

ECEG 750. Antenna Engineering. 3 Credits.

Analysis and design of various antenna types such as dipoles, horns, reflectors, apertures, microstrip and wire antennas. Electronically scanned arrays. Radiation pattern antenna impedance, gain, directivity, bandwidth, beam width, and frequency dependence. Reciprocity between receiving and transmitting antennas. Amplitude tapering to achieve desired sidelobe characteristics.

ECEG 751. Microwave Circuits. 3 Credits.

Transmission lines and waveguides; circuit representation of waveguide systems using impedance and scattering formulation, impedance transformation and matching; Faraday rotation in ferrites; passive microwave devices; terminations; attenuators, couplers, circulators, the magic tee; emphasis on developing a circuit view point for analyzing microwave devices.

ECEG 762. Modeling and Simulation. 3 Credits.

Review of probability distributions; random number testing and generation; mathematical models; Markov chains; simulation methods; data analysis; Monte Carlo methods.

ECEG 763. Data Structures and Computer Algorithms. 3 Credits.

Sequential and parallel algorithms for non-numerical and numerical applications. Algorithm complexity analysis, basic data structures, searching, sorting graph, and numerical algorithms.

ECEG 764. Data Base Management Systems (DBMS). 3 Credits.

Software and hardware design problems for DBMS; an overview of data base systems, data manipulation languages, normal forms, machine architectures.

ECEG 792. Advanced Projects in Electrical or Computer Engineering. 3 Credits.

A project course of an advanced nature conducted by assigning individual investigations to be performed by the student under the supervision of a staff member; consists of theoretical and experimental investigations in specialized fields of electrical engineering of interest to the student.

ECEG 793. Advanced Study in Electrical or Computer Engineering. 3 Credits.

Individual study of a selected topic in electrical engineering under the supervision of a staff member.

ECEG 794. Selected Topics in Electrical Engineering. 3 Credits.

Topics of current interest to graduate Electrical Engineering students; subject matter will be announced in advance of semester offering.

ECEG 795. Special Topic: in Computer Engineering. 3 Credits.

Topics of current interest to graduate Computer Engineering students; subject matter will be announced in advance of semester offering.

ECEG 796. Special Topic: in Electrical and Computer Engineering. 3 Credits.

Back To Top