School of Engineering
Mission
The mission of the Manhattan College School of Engineering is to prepare each student for a productive and rewarding career in engineering or a related profession.
Through Engineering Graduate Degree Programs and the individual graduate engineering courses, the School of Engineering seeks to provide for the academic and professional needs of those who are already engaged in engineering (or related) professions or those who, having completed their undergraduate preparation, desire to enter immediately into advanced study. Post-baccalaureate programs offered by the School of Engineering are intended to prepare professionals for advanced level technical and administrative positions or for admission to doctoral programs at other institutions. All these programs lead to the Master's Degree and are available on a full-time or a part-time basis and also through the School of Engineering Seamless Master's Program. Courses are generally conducted in the late afternoons or early evenings during the fall and spring semesters or terms. Continuing Education Hour (CEH) opportunities for PE license renewal are also available.
Application Procedures
Application admission to all programs in the School of Engineering is through the Office of Admissions. An on-line application can be accessed via the Office of Admissions Web page. The completed form accompanied by the application fee (non-refundable) must be submitted to the Office of Admissions. Applicants for admission are responsible for having official transcripts of all undergraduate and graduate courses mailed directly to the Office of Admissions, paying the application fee, submitting letters of recommendation, and submitting required standardized test scores.
Official transcripts (not student copies) of all undergraduate and graduate records must be sent to the Office of Admissions by the institutions issuing them. Applicants who file an application before the baccalaureate degree has been conferred may be accepted pending the successful completion of their undergraduate work. A final transcript must be received in the Office of Admissions prior to course registration.
Graduates of Manhattan College should contact the Office of the Registrar requesting that an official transcript be sent to the Office of Admissions.
An application is not complete until all the necessary materials and application fee have been received by the Office of Admissions. Incomplete applications cannot be processed. Students who file an application and whose official transcripts arrive after the deadline date cannot be assured that their application will be processed in time for the semester for which they are applying.
For best consideration, filing of the graduate application should be completed before May 1st for summer session application; August 10th for fall session applicants, and January 7th for spring session applicants; however, applications are reviewed on a continuous basis. Students seeking admission into the full-time engineering programs must have their application for the fall session completed by March 1st if they are applying for a fellowship or scholarship for the fall semester.
The director of the graduate engineering program to which a person is applying and the Dean of Engineering review the application and supportive documents and forward their recommendations to Admissions. The Office of Admissions informs the applicant of the decision. Accepted students will receive the instructions for registration at the beginning of the session for which they have been accepted.
The documents submitted in support of application cannot be returned to the applicant nor can they be duplicated for any purpose. All documents received are part of the records of the College.
Admission
Applicants for admission into any graduate program in the School of Engineering must hold, before beginning the program, a baccalaureate degree from an accredited college or institution acceptable to Manhattan College. In addition, they must meet any specific requirements as stated in the for the respective programs. An undergraduate cumulative grade point average (GPA) of 3.00 on a 4.00 scale is normally required for admission to all engineering graduate programs, although other factors can be considered in the decision for admission. Applicants are not required to submit results of the Graduate Record Examination (GRE). However, GRE scores may enhance the application. All applicants to masters degree programs in the School of Engineering must submit two recommendation letters and a short resume.
Admission into graduate engineering programs will be granted as a matriculated student, one seeking to fulfill the requirements for a degree. A student may be granted permission to take an approved graduate course on a non-matriculated basis or, in special cases, as an audit. A non-matriculated student is one earning graduate credit for a specific course but not necessarily working for a degree. For both non-matriculated and auditing students, tuition and fees are the same as for matriculated students.
A student who lacks undergraduate prerequisites for a specific program may be asked to satisfactorily complete certain undergraduate (bridging) courses as a non-matriculated student. When these courses are completed satisfactorily, the student may be matriculated after a review by the graduate program director and the Dean of the School of Engineering.
Students requesting to take graduate courses as a non-matriculated student must have the necessary prerequisites for those courses. Students may not register for more than 12 credits as a non-matriculated student.
All students must comply with immunization regulations as previously stated in the introductory section of the catalog.
Students who take graduate courses at Manhattan College on a non-matriculated basis and apply thereafter for admission to a graduate program as a matriculated student will be informed at the time of acceptance which courses may be applied to that degree program.
Students who have earned a master's degree or who are pursuing a master's degree in one engineering program from Manhattan College and desire to seek admission into another program must file a new application with the Office of Admissions.
All documents of applicants who have been accepted and for extenuating circumstances cannot register for courses during the session for which they were admitted will be kept on file for two years. The documents will be destroyed if the applicant does not register for courses within that period.
Seamless Master's Degree Program
Academically qualified undergraduate engineering students at Manhattan College may be invited to participate in a Seamless Master's Degree program in chemical, civil, computer, electrical, environmental, or mechanical engineering. Qualified students who enter Manhattan College with Advanced Placement and/or undergraduate college credit will generally be in a position to take graduate courses during their senior year at Manhattan College while completing the requirements for the Bachelor's degree. It may then be possible to obtain a Master's degree with only an additional year of study.
Undergraduate students who have earned a minimum of 3.20 cumulative GPA by the end of the first semester of their junior year are eligible to apply for the Seamless Master's Degree program upon the recommendation of a member of the engineering faculty. Transfer students may be considered after completing courses at Manhattan College. All students participating in the Seamless Master’s Degree program are required to submit an application for admission to that graduate program. The online application must be submitted in the senior year through the Office of Admissions. Students are required to complete the baccalaureate degree with a cumulative GPA of 3.00, or higher, prior to continuing for the additional year of graduate study.
Students admitted into the Seamless Master's Degree program may enroll in 500, 600, or 700 level courses while completing the requirements for the Bachelor's Degree. These courses will count for either undergraduate or graduate credit but not for both degree programs. Undergraduate students in the Seamless Master's Degree program and those not in the program who take dual-listed undergraduate-graduate courses cannot take the undergraduate level course for undergraduate credit then later take the graduate level course for graduate credit. Because some required graduate courses are offered on a two-year rotation, admitted students must meet with the chair of the major department prior to their senior year in order to select appropriate 500, 600, and 700-level courses to satisfy the Master's Degree requirements. There is no tuition increase for enrolling in graduate courses during the senior year provided the student does not exceed the total number of credits permitted for the semester. Qualified students are limited to a total of six credits of graduate level courses as undergraduates as described elsewhere in the undergraduate catalog.
After completing the undergraduate degree requirements, financial support may be available from individual departments for the additional year of graduate study. This support typically includes research assistantships, graduate assistantships, academic scholarships and grants, and industrial fellowships.
Visiting Students
Students who are matriculated in a graduate program at another institution and who wish to take a course (or courses) at Manhattan College may do so as non-matriculated students for individual courses for which they have the prerequisites. For non-matriculated students, tuition and fees are the same as for matriculated students.
International Student Applicants
The College accepts international students for its full-time graduate programs in the School of Engineering. Application procedures and admission criteria and information can be found in the individual sections of the catalog. In general, the College cannot accept these students into its part-time graduate programs. The student who is accepted and receives a student visa must be enrolled in each term of the academic year for a minimum of 9 credits. Such students must complete the program within 18 months.
International student applicants should submit their admission application, official transcripts, and the admission fee four months before the beginning of the session they wish to enter. In addition, they must submit a notarized statement that they have sufficient funds to finance their education and their maintenance. Many of the sources of financial assistance are limited to the residents of the United States.
Unless exempted, all international students applying from foreign countries must take the TOEFL (Test of English as a Foreign Language) or acceptable equivalent and have the test results sent to the Office of Admissions. A minimum TOEFL score of 80 (internet based test), 213 (computer based exam), or 550 (paper based exam) will satisfy Manhattan College admission requirements and criteria for issuance of the I-20 form. However, admission and issuance of an I-20 form is also possible for students with TOEFL scores below 80, 213 or 550 levels for the internet, computer, and paper based exams, respectively, provided they successfully complete an approved English as a Second Language course at another institution or an acceptable substitute at Manhattan College. The School of Engineering will also accept IELTS (International English Language Testing System) scores with a minimum of 6.5 on the 9.0 scale, TOEIC (Test of English for International Communication) scores with minimum score of 690, and Duolingo English Test scores of 110 or higher.
Some international students are exempted from the English proficiency requirement based on where the undergraduate degree was awarded. International students graduating from a four-year undergraduate engineering program in the United States accredited by the Engineering Accreditation Commission (EAC) of ABET (www.abet.org) will not need to submit an English proficiency exam score. Graduates of undergraduate engineering programs in English speaking countries that are signatories to the Washington Accord along with the USA (http://www.washingtonaccord.org/), specifically Australia, Canada, Ireland, New Zealand, and the United Kingdom, will not need to submit English proficiency exam scores. A complete list of exempted countries is available from Graduate Admissions.
An international student who is informed of acceptance must deposit a non-refundable fee which will be credited toward tuition. This fee is non-refundable if the student does not register but will be credited to their account for two years. The amount of the fee is stated in the acceptance letter. When the fee and other required documents (e.g., CFR, financial documents, and passport) are received, the student will be sent an I-20 form which must be presented to the United States authority to arrange for an F1 student visa.
Degree Requirements
All engineering graduate programs require a minimum of thirty credit hours of graduate course work. One exception is the masters of science degree in construction management which requires thirty-three credit hours. A minimum cumulative grade point average of 3.00 in all courses in the program of study is also required. A student must remain in good academic standing, as described earlier in this graduate catalog, or the student will be subject to dismissal from the college. Other degree requirements, if present, are detailed under each graduate program description.
Graduate Engineering Course Concentrations
Modern engineering practice increasingly demands integration of knowledge and expertise from more than one engineering discipline. It is often desirable for the practicing engineer to acquire specific knowledge outside their area of expertise without devoting the time and effort to earn an advanced degree. To address these needs, the School of Engineering offers Graduate Engineering Course Concentration through which various combinations of related courses from the Engineering Graduate Core and from departmental offerings can be used to complete the requirements for a Graduate Engineering Course Concentration in a particular area of study. While the Graduate Engineering Course Concentration is not an engineering degree, it does allow an individual, who is qualified to take the courses and meets any prerequisite requirements, an opportunity to acquire knowledge and expertise in a focused area of engineering in a relatively short period of time. Typically, an individual will be required to complete successfully three or four courses in a particular topical area to earn a Graduate Engineering Course Concentration. While approval of a Department Chair or Graduate Program Director is required to enroll in a graduate course, admission to the Graduate Program is not required to participate in a particular Course Concentration Program. It is expected, however, that individuals desiring to take graduate-level courses in the Course Concentration will have a baccalaureate degree in either an engineering field, a science or applied science field, or mathematics. Specific information regarding Graduate Engineering Course Concentration is available from the Engineering Dean's Office or from individual Department Offices on the School of Engineering website, www.manhattan.edu/academics/engineering/.
Continuing Education Hours
The School of Engineering is a New York State approved provider of Continuing Education Hours (CEH) for PE license registration. The School of Engineering offers a variety of short courses in a variety of formats (e.g., on-campus, on-site) for Professional Engineers to earn Continuing Education Hours. In addition, graduate courses and other offerings will also generally count as CEH's to be used for professional license registration. For details concerning short course offerings and schedules, contact the Office of the Dean of Engineering (718-862-7281).
Chemical Engineering Graduate Courses
CHMG 501. Adv Engineering Mathematics. 3 Credits.
This course covers the various mathematical methods of importance in chemical engineering modeling and analysis. Topics include the development of analytical and numerical solutions of linear and nonlinear ordinary and partial differential equations, use of the Newton-Raphson method to solve systems of non-linear equations, application of Fourier transforms, and use of optimization and minimization methods. Prerequisites: All Math courses required for an undergraduate degree in Chemical Engg.
CHMG 707. Process Thermodynamics. 3 Credits.
Emphasis on the application of thermodynamics to process design; development and use of thermodynamic principles in single-phase and multi-phase processes; applications in reactor design. Pre-requisites: Approval of Graduate Director for Undergraduates only.
CHMG 708. Advanced Heat Transfer Applications. 3 Credits.
This course will cover heat transfer mechanisms and
models for unsteady state and transient conduction,
convection, and radiation in engineering systems.
Applications include novel thermal and fluidic components and heat-exchange systems in the areas of
alternative energy, green materials, food technology
and bio-processing. Prerequisite: Undergraduate heat transfer course. Three credits. Prerequisite: CHML 305 or equivalent.
CHMG 710. Advanced Transport Phenomena. 3 Credits.
Topics include continuum and molecular theories of matter; non-dimensionalization; velocity, temperature and concentration distributions in flow; boundary layer analysis; simultaneous momentum, energy and mass transport; mathematical analogies; simultaneous diffusion and chemical reaction. Prerequisite: CHML 411 or equivalent.
CHMG 713. Chemical Reactor Design. 3 Credits.
Application of engineering analysis, computer design and optimization of chemical reactor systems.
Pre-requisites: Approval of Graduate Director for Undergraduates only.
CHMG 722. Elements of Transport Phenomena. 3 Credits.
This course covers the development of the mass, energy and momentum transport equations used to solve problems in chemical engineering.
Pre-requisites: Approval of Graduate Director for Undergraduates only.
CHMG 727. Air Pollution Control Design. 3 Credits.
Emphasis on particulate control. Industrial sources and regulatory codes for particulate emissions; review of fine particle technology; development of performance equations and design procedures for gravity settlers, cyclone-electrostatic precipitators, baghouse and venturi scrubbers; atmosphere dispersion adn stack design; overview of gaseous control equipment.
CHMG 735. Independent Project Or Thesis. 3 Credits.
Chemical engineering project or thesis on selected topics, involving experimental research, process design, computer simulation, and/or authoring technical papers. Written report or publication, and oral presentation are required. Topic to be selected by the student with approval of a faculty advisor and the Chair.
CHMG 736. Independent Project or Thesis. 3 Credits.
Chemical engineering project or thesis on selected topics, involving experimental research, process design, computer simulation, and/or authoring technical papers. Written report or publication, and oral presentation are required. Topic to be selected by the student with approval of a faculty advisor and the Chair.
CHMG 739. Introduction to Design Project. 3 Credits.
Reaction path screening; exploratory technical and economic process evaluations; process synthesis; preliminary process flow diagram; material and energy balances; quick sizing design techniques and factored cost estimate; material selection. Written report or publication and oral presentation are required. Prerequiste: CHML 406 or equivalent.
CHMG 740. Design Project. 3 Credits.
Preliminary equipment design techniques; computer-aided process optimization studies; hazards and safety evaluation; site location and layout studies; detailed economic evaluation. Written report or publication and oral presentation are required.
Prerequisite: CHMG 739.
CHMG 741. Special Topics. 3 Credits.
Special topics of current interest to graduate students; subject matter will be announced in advance of semester offering. Written report or publication and oral presentation are required.
CHMG 743. Advanced Fluid Mechanics. 3 Credits.
A course focused on differential equations of motion for incompressible fluids. Major topics include tensor notation and vector calculus, linear and angular momentum conservation, scaling, Stokes flow, inviscid flow, boundary layer, vorticity, potential flow and lubrication.
Prerequisites: MATH 286, CHML 208 or equivalent.
CHMG 746. Advanced Chemical Processes for Water Purification. 3 Credits.
Advanced study of the processes used for water treatment and purification with an emphasis on design principles and process modeling. Processes covered include carbon adsorption, ion exchange, chemical oxidation of inorganic and organic chemicals, disinfection using chlorine, ozone and ultraviolet light, strategies for control of disinfection byproducts, and chemical precipitation Spring: Prerequisite CHML 321.
CHMG 747. Pollution Prevention. 3 Credits.
Regulations, advantages and disadvantages of pollution prevention: EPA'S pollution prevention hierarchy, including source reduction, recycling, control and ultimate disposal; Multimedia approaches and total systems analysis of pollution prevention options; applications to specific processes and industries from various engineering disciplines. Three Credits: Instructor Consent.(cross-listed with ENGG 670).
CHMG 748. Petroleum Refinery Processing I. 3 Credits.
Overview of a modern, integrated petroleum refinery:feedstock properties, product slate, and processes used to convert crude and intermediate streams into desirable products. Topics include hydrocarbon chemistry, crude oil properties, fuel product quality, impacts of worldwide environmental legislation, and overall operability and economic performance of refineries. Three lectures.Fall.
Pre-requisite: CHEM320. Pre-requisite or Co-requisite: CHML405.
CHMG 749. Natural Gas Processing I. 3 Credits.
Overview of natural gas industry with emphasis on gas plant operations. Students will develop a working knowledge of the major processes for gas compression, dehydration, acid gas removal and tail gas cleanup, sulfur recovery, cryogenic extraction of natural gas liquids (NGL), as well as LNG production, storage, and transportation. Three lectures. Pre-requisite: CHEM320. Pre-requisite or Co-requisite: CHML405.
CHMG 752. Advanced Processing Theory. 3 Credits.
The theory of multiphase and reactive flow processes, including: non-newtonian and time-dependent flow, heat transfer at boundaries, powder and solids processing, surface forces, phase transitions, ripening and sintering, flow with chemical transformations. Applications include cosmetics, personal care products, adhesives, food technology, pharmaceutical and advanced coating formulations. Pre-requisites: Approval of Graduate Director for Undergraduates only.
CHMG 753. Advanced Processing Techniques. 3 Credits.
Applications of advanced processing techniques for multiphase processes, including: multiphase flow, pumping, mixing, homogenization, atomization, drying. Applications include cosmetics, personal care products, adhesives, food technology, pharmaceutical and advanced coating formulations.
Pre-requisites: Approval of Graduate Director for Undergraduates only.
CHMG 758. Formulations I. 3 Credits.
This is the first of two formulations courses which are focused on developing the knowledge and skills set necessary to carry out effective formulation design and engineering of complex fluids to develop products for the cosmetic and consumer industry. This course will focus on skin care formulations with the aim to develop formulation design rules to enhance performance attributes such as hydration, photoprotection, tactile and visual sensory. This will be done through effective engineering of the microstructure-processing-performance linkages for emulsions, complex fluid gels and creams utilized in skin care. Co-requisite: CHMG 760. Pre-requisites: Approval of Graduate Director for Undergraduates only.
CHMG 759. Formulations II. 3 Credits.
This is the second of two formulations courses which are focused on developing the knowledge and skills set necessary to carry out effective formulation design and engineering of complex fluids to develop products for the cosmetic and consumer industry. This course will focus on hair care and make-up formulations with the aim to develop formulation design rules to enhance performance attributes such as hair conditioning, tactile and visual sensory. This will be done through effective engineering the microstructure-processing-performance linkages for structured fluids and semi-solids utilized in producing hair-care and make-up products. Pre-requisites: Approval of Graduate Director for Undergraduates only.
CHMG 760. Emulsion & Polymer Tech. 3 Credits.
This is an introductory complex fluids course with a particular emphasis on emulsions and polymer technologies. The following topics as applied in an engineering context will be covered: advanced characterization including rheology and scattering, physico-chemical aspects and stability of suspensions, emulsions, surfactants, and micelles. Polymer science fundamentals required for applications will additionally be covered. Applications include cosmetics, personal care products, adhesives, food technology, pharmaceutical and advanced coating formulations. Students in this course will be expected to submit a special topic assignment. Pre-requisites: Approval of Graduate Director for Undergraduates only.
CHMG 761. Industrial Practice in Pharmaceutical Industry. 3 Credits.
Advanced study of the principles used for pharmaceuticals production with an emphasis on physiochemical processes governing development and manufacturing of pharmaceuticall agents and drugs. Technologies covered include aseptic, vaccines, injectables, ophthalmics, ingestible and Oncology. Analysis of quality control processes in conformance with government oversight and regulations, especially the FDA. Students in this course will be expected to submit a special topic assignment
Pre-requisite: Approval of Graduate Director.
CHMG 762. Manufacturing and Analysis of Pharmaceutical Products. 3 Credits.
Systematic study of the unit operations, practices and analysis techniques that are important to the pharmaceutical products industry. Topics covered include agitation, aeration, crystallization, mixing of solids, mixing of complex fluids, analysis of particle size distributions, granulation and blending, pelletizing, encapsulation, principles and practice of freeze drying, and quality assurance and testing. Students in this course will be expected to submit a special topic assignment. Pre-requisite: CHMG 761 or CHML 461.
CHMG 763. Industrial Regulations&Quality. 3 Credits.
Discussion of a variety of aspects of regulated and quality-driven industries: Regulations - CFR, regulating authorities, regulatory inventories, applications, compliance, and recalls; Quality Systems - Six Sigma@, GXP, and TQM, documentation, measurement, safety, training, and cleanliness; Quality Control Techniques - Validation, ASTM testing, run rules, control charts.
Pre-requisites: Approval of Graduate Director for Undergraduates only.
CHMG 765. Biopharmaceutical Formulations. 3 Credits.
This course is focused on effective product and formulation design for the biopharmaceutical industry. The course will cover key aspects of biotherapeutic product development including: Formulation design for liquid dosage forms; Development of analytical control strategy such as stability indicating (QC) assays; and Characterization assays through various biophysical techniques. Co-listed with CHML 465.
CHMG 770. Bioseparations. 3 Credits.
Bioseparations consists of a sequence of recovery and separations steps that maximize the purity of the bioproducts while minimizing the processing time, yield losses, and costs. Topics include: centrifugation and filtration, extraction, membrane separations, electro-kinetic separations, precipitation, crystallization, and chromatography. Students in this course will be expected to submit a special topic assignment. Pre-requisites: CHML306 and CHML339.
CHMG 772. Bioreaction Engineering. 3 Credits.
Application of engineering principles to biological processes. Topics include enzyme-catalyzed reactions, kinetics of cell growth and product formation; aeration, agitation and oxygen transfer; bioreactor design and scale-up; biological waste treatment, and fermentation laboratory experiments. Three lectures. Prerequisites: CHML 306, CHML 321.
CHMG 773. Synthesis & Deposition of Thin Films. 3 Credits.
This course will introduce students to synthesis and deposition of thin films of materials on different substrates for different applications. The course will cover the fundamentals of techniques associated with different classes of materials – metals, polymers, semiconductors, and ceramics. The course will also include guest lectures by researchers from industry and academia as well as hands-on work on a state-of-the-art, polymer Chemical Vapor Deposition (CVD) instrument located in the chemical engineering department. A term paper submission based on a journal article critique is required as a part of the final course grade.
CHMG 774. Additive Manufacturing: Technologies, Materials and Applications. 3 Credits.
This course will build the technical knowledge base for understanding additive manufacturing technologies including an understanding of the materials, required material science principles and applications. Structural materials (polymers, ceramics, bio inks etc.) in use in additive manufacturing and their forms, the physical models for processing them will be discussed in detail. Technologies including extrusion-based printing, droplet-based printing, powder-based printing, and vat photopolymerization printing will be discussed with respect to printable materials printing parameters, and end-product properties. The course will include a number of team-based projects to allow students to apply the learned principles for designing 3D printed components through correct choice of materials/technologies. A term paper submission based on a journal article critique is required as a part of the final course grade.
CHMG 775. Production & Application of Biomaterials. 3 Credits.
Biomaterials encompasses the field of study focusing on producing porous, often proteinaceous, materials which can host living organisms, a therapeutic or diagnostic procedure. The topics include: investigation of the mechanisms of release from polymeric delivery systems of insulin, interferon, growth hormones and vaccines; stimuli-sensitive controlled drug-delivery systems; biodegradable materials as tissue-engineering scaffolds and as drug-delivery matrices. Emphasis will be on the synthesis and application of collagen nanofibrils for environmental engineering, scaffolds, and cell culture. A term paper submission based on a journal article critique or an experimental project is required as a part of the final course grade.
Civil Engineering Graduate Courses
CIVG 501. Introduction to Geoenvironmental Engineering. 3 Credits.
Application of geotechnical engineering in the design and analyses of environmental systems. Waste Disposal, waste containment systems, waste stabilization. Engineering design of solid and hazardous waste landfills. Groundwater monitoring at landfill sites. Use of geosynthetics in containment system design. Slurry walls and other containment systems. Three lectures. Spring. Cross-listed with CEEN 402.
CIVG 505. Wood Structures. 3 Credits.
Mechanical properties of wood; orthotropic nature
of wood as a material, dimensional instability, susceptibility to biological deterioration, implications
of duration and types of load. Design of solid, laminated and composite beams, columns, shear walls,
diaphragms, roofs, and trusses. Behavior and design
of mechanical connections. Introduction to light
framed wood structures, arches, bridges, and other
timber structures. Prerequisite: senior standing and permission of the Chair. Three credits
Cross-listed with CIVL 445.
CIVG 506. Tunneling. 3 Credits.
This course provides analysis, design and construction issues for the tunneling in soils and/or rocks.
The specific areas covered include planning, rock
mass classification, rock failure mechanisms, initial
excavation supports, design considerations for permanent linings,tunnel excavation methods,groundwater control, ground control measures, and tunnel
security.The design considerations of high pressure
water tunnels are also discussed including selection
of permanent liners, coupled hydromechanical behavior of jointed rock mass and evaluation of hydrojacking potential. Finally, tunnel security against
earthquake, fire, and explosion, which is one of the
Nation’s current important concerns, is discussed.
Prerequisite: SCI 301 and CIVL 310. Corequisite: CIVL 409 and CIVL 410.
Three credits.
CIVG 507. Introduction to Engineering Investigations/Forensic Engineering. 3 Credits.
The course will focus on the framework of investigation including documents review, condition
assessment, testing, analysis per code and industry standards, and expert report. Students will also advance
their understanding of professional ethics, structural behavior and performance criteria, codes and
standards and industry practices, and learn how to properly apply engineering principles to investigate
failure, damage, or other structural performance problems. In addition, the course will provide background
of the construction law, litigation, and arbitration process to resolve the construction related dispute.
CIVG 508. Structural Renovation. 3 Credits.
In renovation, repair, retrofit, or adaptive reuse projects on existing structures, practicing engineers are faced with unique challenges that often require a combination of in-depth knowledge of material properties and durability, construction practice and detailing (including historic construction systems), and structural analysis and design. This course will offer a review of various aspects of structural repair and rehabilitation projects, while examining structures, components, and systems of various types and materials. The students will learn about challenges of investigation, typically the first step in any repair and rehabilitation project on existing structures. Use of visual, non-destructive, and destructive investigative methods will also be discussed. Then, focus will shift to a review of available information sources, known deterioration mechanisms, recognized repair techniques, as well as typical strengthening and alteration options as they apply to repair and rehabilitation projects involving various structure types (concrete, steel, wood, and masonry). Finally, the course will focus on a review of options for repair and retrofit of building lateral systems and facades.
Cross-listed with CIVL 428.
CIVG 509. Preservation Engineering - Theory and Practice. 3 Credits.
The course explores the inherent roles of precedent and existing constructions for design within the urban context-a synthesis of the built past and the envisioned future, of analysis and design. While ideas of sustainability become more and more relevant to our design approach and decisions, this course explores the inherent sustainability of maximizing the use of what we already have through the reuse and revitalization of existing construction work. Work with existing and new construction becomes mutually beneficial as we learn from the past to inform our new designs, and as we apply modern materials and techniques to sustain or revitalize the structures we have.
CIVG 510. Restoration of Historic Buildings. 3 Credits.
In renovation, repair, retrofit, or adaptive reuse projects on existing structures, practicing engineers are faced with unique challenges that often require a combination of in-depth knowledge of material properties and durability, construction practice and detailing (including historic construction systems), and structural analysis and design. This course will offer a review of various aspects of structural repair and rehabilitation projects, while examining structures, components, and systems of various types and materials. The students will learn about challenges of investigation, typically the first step in any repair and rehabilitation project on existing structures. Use of visual, non-destructive, and destructive investigative methods will also be discussed. Then, focus will shift to a review of available information sources, known deterioration mechanisms, recognized repair techniques, as well as typical strengthening and alteration options as they apply to repair and rehabilitation projects involving various structure types (concrete, steel, wood, and masonry). Finally, the course will focus on a review of options for repair and retrofit of building lateral systems and facades.
CIVG 520. Bridge Engineering. 3 Credits.
Planning and design of highway bridge projects. Bridge Engineering will include analysis and design of both superstructure and substructure. Design will be based on LRFD and the specifics of bridge loading according to AASHTO specifications. Design project. One three-hour period. 3 credits. Prerequisites: CIVL 309, CIVL 409, CIVL 410 and CIVL 412 all with a grade of B or better.
CIVG 530. Water Infrastructure Systems Analytics. 3 Credits.
The course will cover various analytics techniques for optimal planning and operation of water resources systems. Applied techniques include advanced regression, machine learning, nonlinear programming and meta heuristic algorithms, and multi-criteria approach for water resources management. Cross-listed with CEEN 430, ENVG 530.
CIVG 532. Advanced Strength of Material. 3 Credits.
Stresses in two and three dimensions; symmetrical and unsymmetrical bending; shear center; curved beams; beams on elastic foundation; thin plates and shells; torsion of non-circular sections; thick-walled cylinders. Three lectures. Prerequisite: ENGS 230, CIVL 312 with a minimum of C grade.
CIVG 533. Advanced Mechanics for Civil Infrastructure. 3 Credits.
This course is designed to apply advanced engineering mechanics techniques to solve the infrastructure’s problems. The students will be able to create the model, understand the mathematical formulation and use computer modeling to analyze infrastructure’s problems dealing with structural, geotechnical and materials challenges. General purpose finite element packages will be used throughout the semester. Pre-requisite: The course is open to graduate students or a senior student with the instructor permission.
CIVG 546. Coastal Engineering. 3 Credits.
This is an introductory course in coastal engineering. It blends environmental and civil engineering topics and has a strong focus on design. Topics covered include: Tides, Waves, Storm Surge, Shore Protection, Breakwaters, Harbors, Beach Protection, Sediment Transport, Beach Restoration, Floodwalls, Levees. Cross-listed with CEEN 446.
CIVG 603. Sustainability in Civil Engineering Design Performance. 3 Credits.
This course covers the engineer’s role in designing so that the built environment becomes more sustainable. The built environment is a major contributor to all carbon emissions, during and after construction. The course explores methodologies for extending the life span of steel, concrete and wood buildings and minimizing their carbon footprint with standards and industry trends such as Life Cycle Assessment, Sustainable Specifications and Materials, Net Zero, LEED, and Passive House. The course also explores multi-disciplinary areas to provide a holistic picture of the construction industry. Prerequisite: Approval from the Graduate Director.
CIVG 732. Thesis. 1-6 Credit.
A technical paper under faculty supervision based upon original study or research, an original design or a thorough analysis of an existing or proposed system of either a scientific or engineering nature. The grade for the year-long course must reflect the progress of the student at the end of each semester. The progress grade can be P (pass) or F (failure). This is a year long course.
CIVG 756. Fracture and Fatigue. 3 Credits.
Comprehensive study of fracture and fatigue failures of structural system; fracture mechanics of steel structures; fatigue crack initiation and propagation; fatigue of welded structures; corrosion and nondestructive investigation.
CIVG 757. Advanced Study in Civil Engineering. 3 Credits.
Individual study of selected advanced topics in civil engineering under the supervision of a faculty member.
CIVG 770. Geotechnical Earthquake Engineering. 3 Credits.
The course will cover topics in Geotechnical Earthquake Engineering by focusing of the following topics: Seismic Hazard; Site Response, including soil amplification, liquefaction, Codes ASCE7 and AASHTO; Soil-Structure Interaction; Geo-Retrofit and Mitigation. In addition, the course will cover case histories of major earthquakes.
CIVG 772. Hydrology. 3 Credits.
Hydrologic cycle, interception, infiltration, evapotranspiration, measurement an analysis of precipitation; design hyetograph, unit hydrographs-analysis, synthetic generation of unit hydrograph; measurement and analysis of runoff, synthetic generation of flow, analysis of stream gages, statistical and probabiltiy analysis of stream flow, regional frequency analysis; probable maximum precipitatation, probable maximum floods; flood routing methods and applications; hydrologic study of complex stream network.
CIVG 773. Hydropower Engineering. 3 Credits.
Fundamentals of water power equation, schemes of water power development, analysis of stream flow data, flow duration curve, power duration curve, mass curve, firm power; selection of turbine, passages and power houses; appurtenances for hydro plants; conservation, economic and environmental aspects.
CIVG 777. Advanced Structural Analysis I. 3 Credits.
Analysis of structural system subjected to loadings, temperature, settlement, and elastic support using classical methods, flexibility method and the stiffness method. Indeterminate arches and cables. Study of 3-D modeling using the flexibility and the stiffness methods.
CIVG 778. Advanced Structural Analysis II. 3 Credits.
Analysis of frameworks under dynamic loads; computation of mode shapes and frequencies; calculation of response using model superposition and numerical methods; the use of response spectra for seismic analysis; buckling of structures using the geometric stiffness matrix.
Prerequisite: CIVG 777 or equivalent.
CIVG 779. Design Steel Structures. 3 Credits.
Review of load specifications and design philosophy; design of single and multistory rigid frames; behavior of connections and the influence of connections on member behavior; moment-rotation curves; composite construction; light gage steel.
Prerequisitie: CIVG 777 or equivalent.
CIVG 780. Long Span Metal Structures. 3 Credits.
Classical forms of long span bridges; loads on bridges; suspension systems; cable-stayed bridges; space frameworks; orthotropic bridge decks; box girder bridges.
Prerequisitie: CIVG 779 or equivalent.
CIVG 781. Special Topics in Structural Engineering. 3 Credits.
Special topics in structural engineering of current interest to graduate students; subject matter will be announced in advance of particular semester offering.
CIVG 784. Reinforced Concrete Structure I. 3 Credits.
Research on the concrete stress-strain curve: specimen-testing machine interaction; micro-cracking; time-dependent strain in concrete; creep and shrinkage; ultimate strength analysis of reinforced concrete members; diagonal tension failure of reinforced concrete beam, design of two-way slab.
CIVG 785. Reinforced Concrete Structure II. 3 Credits.
Design of determinate and indeterminate pre-stressed concrete structures. Theory of pre-stressing, buildings and bridges applications using PCI and AASHTO specifications. Prerequisite: CIVG 777 or its equivalent.
CIVG 786. Ground Improvement. 3 Credits.
Comprehensive coverage of technologies used to modify the engineering properties of earth and non-earth materials both in situ and artificially placed. Overviews of the use of water and manufactured non-earth materials as alternatives for backfills and fills, and the use of geosynthetic tensile reinforcement.
Prerequisite: CIVL 308 or equivalent.
CIVG 787. Special Topics in Geotechnical and Geoenvironmental Engineering. 3 Credits.
Special topics in geotechnical and/or geoenvironmental engineering of current interest to graduate students and engineers in practice. Subject matter will be announced in advance of particular semester offering.
Permission of the instructor.
CIVG 789. Advanced Geotechnical Applications: Foundations. 3 Credits.
Detailed consideration of the application of geomechanics principles to the analysis and design of shallow and deep foundations including footings, mats, piles, drilled shafts, and modern hybrids (piled rafts). Overviews of site characterization, criteria for selection of foundation alternatives, allowable settlements, construction and constructability.
Prerequisite: CIVL 310, 410 or their equivalents.
CIVG 791. Advanced Geotechnical Applications: Earth-Retaining Structures. 3 Credits.
Detailed consideration of the application of geomechanics principles to the analysis and design of earth-retaining structures including basement walls, rigid retaining walls, modern internally-reinforced structures (MSEW, SRW, soil nailing), cantilever and anchored bulkheads, braced excavations, and cellular structures under both gravity and seismic loading. Introduction to state-of-art concepts such as controlled yielding using geofoam compressible inclusions.
Prerequisite: CIVL 308, 438, or their equivalents.
CIVG 792. Slope Stability. 3 Credits.
Detailed consideration of the application of geomechanics principles to the analysis and design of unsupported slopes including natural slopes, cut slopes, embankments, earth dams, and levees. Introduction to the use of geosynthetic tensile reinforcement. Prerequisite: CIVL 310, 410, or their equivalents.
CIVG 793. Structural-Fire Engineering. 3 Credits.
This course covers behavior and design of structures subjected to fire; heat transfer fundamentals and modeling of fires; material properties at elevated temperatures; structural-fire resistance and protection; and structure-fire response. Students will learn vocabularies and concepts of fire safety design of structures, and important steps involved in analysis, design and evaluation of structural members and systems subjected to fire. Students will gain cross-disciplinary skills and other skills enabling them to solve problems with uncertainty of information.
Three lecture hours a week for one semester. Prerequisite: Graduate standing.
CIVG 796. Elastic and Inelastic Stability of Structures. 3 Credits.
Elastic and inelastic buckling of axially loaded members; lateral buckling of beams; energy methods; flexural-torsional buckling of centrally and eccentrically loaded columns of open cross section in the elastic and plastic ranges.
CIVG 797. Advanced Soil Mechanics. 3 Credits.
Advanced topics in soil mechanics including effective stresses under partially saturated conditions, advanced constitutive models, vibratory loading, and seismic liquefaction.
Prerequisite: CIVL 308 or equivalent.
CIVG 798. Geotechnical Site Characterization. 3 Credits.
Detailed consideration of the processes and methodologies for determining soil and rock properties for a wide variety of geotechnical applications using both in-situ and laboratory methods. The role of pre- and post-construction design verification including instrumentation. Prerequisites: CIVL 310, 410 or their equivalents.
CIVG 799. Theory of Plates and Shells. 3 Credits.
Analysis of plates loaded transversely and in their plane; general theory of shells of revolution; shallow shells; membrane theories of shells; Levy's method; theory of folded plates; solutions using finite difference methods.
Construction Management Courses
COMG 602. Introduction to Construction Management. 3 Credits.
Techniques for the decisions and actions of the various participants involved in the design and construction of civil engineering projects; techniques used in estimating, planning, coordinating and controlling time, cost, quality and usage.
COMG 603. Advanced Construction Management. 3 Credits.
COMG 605. Construction Planning and Scheduling. 3 Credits.
This course deals with the planning and control of
construction projects.This course will cover topics
on time schedules for materials, labor, equipment,
expediting material delivery and bar charts. Emphasis on the theory behind the scheduling techniques used in the construction industry such as
Critical Path Methods (CPM),precedence diagrams
and Program Evaluation Review Techniques
(PERT). Three credit
Cross-listed with CEEN 405.
COMG 606. Building System Design. 3 Credits.
In this course, students will gain familiarity with the various systems required within buildings. Students will gain knowledge of various code issues as they relate to buildings and building construction. Systems covered will include, Mechanical & HVAC, Electrical, Plumbing/Sanitary, Fire Production, and Life Safety. The course will also address the interaction between building systems as they relate to the Architectural and Structural components of buildings. The course will also address the evolution of building systems, and what to expect in the coming years. At the completion of this course, students will be able to identify as well as understand the purpose of the major components of building systems and understand how they relate to the overall building. Cross-listed with CEEN 406.
COMG 608. Construction Quality and Safety. 3 Credits.
In this course, students will take a practical look at project safety issues, OSHA 1926, site specific Health and Safety Plan (HASP) Quality Plan, Quallity Assurance, Quality Control.
COMG 609. Engineering Risk and Decision Analysis. 3 Credits.
Development and implementation of computational procedures such as Linear, Integer, Multi-objective and Dynamic Programming to assist construction/engineering managers predict the consequences of proposed alternatives and to select an optimal alternative. Decision Tree analyses and other criteria for decision making on construction projects involving elements of risk and/or uncertainty. Solutions using spreadsheet and other com-mercially available microcomputer software are stressed. 3 credits.
COMG 610. Construction Law. 3 Credits.
The American Jurisprudential System as it applies to the management of the construction process; principals of contract formation, subcontracts and contract documents; public works bidding and the Wicks Law; contract performance, suspension and termination; surety bonds; changed conditions, extra work, change orders and claims; time of performance, delay and acceleration; mechanic's liens and trust funds; design professionals' duties and liabilities; insurance and warranties; Alternative Dispute Resolution, including mediation and arbitration.
COMG 611. Environmental Impact Assessment for Construction Projects. 3 Credits.
To provide the student with an introductory overview of the environmental law system including the legal & regulatory process. To acquaint the student with the major Federal (e.g. NEPA), state (e.g. SEQRA), & local (e.g. CEQR, ULURP, zoning) environmental impact legislation and procedures affecting the practice of engineering. To provide the student with the tools necessary to find, understand, use and comply with relevant laws, regulations, codes, forms, premitting, etc. To familiarize the student with real world practice applications of environmental laws and regulations to major construction projects. To enhance understanding of the interaction of the environmental law system with engineering through case studies.
Cross-listed with CEEN 411.
COMG 612. Marketing and Finance of Engineering Projects. 3 Credits.
Formulation of financial techniques for solution of viability of engineering projects; typical subject material includes development and use of Internal Rate of Return and Net Present Value. Presenting an understanding of marketing, its components and how the construction manager/engineer fits into the corporate marketing equation.
COMG 614. Contracts and Specifications. 3 Credits.
Fundamental concepts of contract law. Types and selection of contracts, e.g. construction. Procedures for advertising, awarding and administering contracts. Specifications and their cost impacts. Liability of engineers. Engineering professional services. Cross-listed with CEEN 414.
COMG 615. Project Controls. 3 Credits.
The course will start with a discussion of Project controls systems involved in Design and Construction of Projects. It will then move into an introduction and examination of two specific Control Systems. First CPM Scheduling including Cost/Resource loading. The student will become intimately familiar with the industry's leading methodology of scheduling for design and construction. The student can expect to become conversant with the terminology, calculations and computer reporting utilized in CPM Scheduling. Finally the course will examine Cost Engineering aspects for Design and Construction Industry. The student can expect to become conversant in Labor Budgeting and Variance Analysis for a Design/construction firm's effort and the Cost Engineering aspects for Construction of a project. Cross-listed with CEEN 415.
COMG 616. Construction Estimation. 3 Credits.
A key parameter for all types of construction emerges from the answer to the fundamental question: "How much is the work expected to cost?" This course examines the process used by the construction industry to arrive at an answer and how the result fits into the overall construction process. Key concepts covered include quantity and quality takeoffs, assigning costs, and finalizing estimates and proposals. Implementation of classic estimating approaches via spreadsheet models will be stressed using examples of particular interest to Civil, Environmental, and construction Management students. Cross-listed with CEEN 416.
COMG 617. Fire Protection Piping System Design. 3 Credits.
Design Fire Protection Piping Systems with an emphasis on water based piping systems. Analyze occupancy and construction classifications for existing and new buildings using the New York State and the New York City Building Code. Determine appropriate system type to be installed in specific hazards environments. Design fire protection piping systems to meet the architectural and structural requirements. Determine design area of applications for the systems being installed. Understand type of piping configurations and advantages of each. Determine water supplies required for each type of building occupancy.
COMG 618. Safety and Environmental Issues in Construction for Engineers. 3 Credits.
This course presents an overview of safety and environmental issues related to construction. Included is the Occupational Safety and Health Administration (OSHA) 30 Hour Construction Industry Outreach Training course that is a comprehensive orientation to the federal safety and health standards as well as an introduction of specific safety and environmental construction related issues.To receive the OSHA Certification, the student cannot miss more than one class period during the semester. Cross-listed with CEEN 418.
COMG 619. Temporary Works in Heavy Construction. 3 Credits.
Course provides an overview of contractors temporary works means in heavy underground construction. This course will include the engineering design of these temporary works. Temporary works are normally the full responsibility of the contractor. However, an understanding of the selection and design of temporary works by contractors is also vital to owners and consulting engineers because they directly influence the constructability and cost of their projects. This course will include: geotechnical parameters and design loadings in temporary works; the design of support of excavation systems including soldier pile and lagging, sheet piling, concrete diaphragm (slurry wall) and secant wall; monitoring and settlement analysis of structures adjacent to excavations; soil improvements and grouting; dewatering; underpinning, and initial supports in rock and soft ground tunnels.
COMG 620. Construction Project Delivery. 3 Credits.
This course will address the fundamentals of completion of a Construction Project. It will provide guidance on the setting up of a project, developing a project plan, putting together a team from the various groups, such as legal, environmental, real estate, public affairs, all associated engineering disciplines, estimating, scheduling, construction management, procurement, quality assurance, safety, financing, operations and associated stake holders. The course will describe how budgets and schedules are established and used to drive the project. The course will also cover what should be included in a project plan and in monthly reports. At the completion of the course, the students will have an understanding of the various aspects of Project Management and how the Project Manager is able to bring them together so they function as one, much as a conductor does with an orchestra. Cross-listed with CEEN 420.
COMG 621. Managing Civil Infrastructure System. 3 Credits.
Examination of the fundamentals of infrastructure planning and management with a focus upon the application of rational methods that support infrastructure decision-making; institutional environment and issues; decision-making under certainty and uncertainty; capital budgeting and finance; group decision processes and elements of decision and finance theory.
COMG 622. Construction Accounting and Finance for Development. 3 Credits.
This course gives an overview of the uses of accounting and financial analysis in decision making in a construction and development environment. The course will help construction professionals – both those who are working in the construction industry and those seeking degrees in construction management – learn how the principles of accounting and financial management can be adapted to and used in the management of construction companies and project management. Students will review accounting concepts, rules, regulations and report requirements as they apply to construction and development and discuss the financial tools needed to understand the financial statements and financial positions of development and construction projects. This course requires minimal proficiency in the use of the Hewlett-Packard HP 12C calculator and EXCEL or their equivalents. Cross-listed with CEEN 422.
COMG 623. Capstone Construction Management. 3 Credits.
This capstone course examines the full range of services which constitute professional construction management as defined by the Construction Management Association of America (CMAA). The CMAA Construction Management Standards of Practice will be utilized as a framework for further development of student core competencies in Cost, Time, Quality, Safety, Contract and Project Management as well as in the roles and responsibilities of the Construction Manager as a Professional. By taking this course, students planning to pursue CM certification will be in position to better gauge their respective areas of strength versus those that may need additional concentration to successfully complete the certification process.
COMG 624. Leadership in Civil Engineering. 3 Credits.
This course covers principles of self-management and leadership. Its focus is on knowledge and skills needed for an engineer to successfully manage and lead oneself, then a project team, and finally, an organization. By better knowing and understanding oneself, defining what one wants to do, effectively communicating it to others, and behaving in an ethical manner, students and civil engineers will have a working knowledge of how to be an authentic manager and leader. Students are required to research, investigate and present case studies on leadership and ethical practices in civil engineering. Cross-listed with CEEN 424.
COMG 625. Special Topic: Construction Management. 3 Credits.
Construction Management project on selected topics, involving the application of the state-of- the-art practices in construction management in the public and private sectors. Written report or publication, and oral presentation are required. Topics to be selected by the student with approval of a faculty advisor and the Program Director.
COMG 626. Strategic Planning in Construction. 3 Credits.
This course presents the strategic planning process as it applies to Construction Management firms operating in the New York Metropolitan Area. It will provide a short history of strategy, definitions, current market analysis, value chain considerations, context in which competitive strategy is formulated; the strategic planning process, including but not limited to SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis, vision and mission statements, goals and objectives, strategies, and action plans that tie strategy to operations. At the completion of this course, students will have a working understanding of the importance of strategic planning and a practical knowledge of the elements of the strategic planning process in order to be able to participate substantively in the development of a strategic plan in a Construction Management (or A/E) company.
COMG 627. Green Facilities Management. 3 Credits.
In this course, students will learn the energy consumption process and how to perform an energy audit of buildings and other structures. Students will gain knowledge of the effectiveness of energy management through economic analysis on the life cycle of the structure. Various sources of energy will be examined, including understanding the production, the bill and the rate schedule. The course will address process energy management with particular emphasis on the following: production, lighting, HVAC, boilers, steam distribution, insulation and control systems. Interaction of these systems as they apply to total heat gains and losses in the building will be studied. New technologies and control systems will also be discussed.
COMG 628. Public Private Partnerships & Design Build: Opportunities & Risks for the Consulting Engineer. 3 Credits.
This course presents an in-depth study of the opportunities and risks presented to the key participants on Public Private Partnership (PPP or P3) and Design Build (DB) projects, particularly the consulting engineer. Specific topics will include: discussion of the varying accepted definitions for the P3 and DB methods; an overview of the history of each method for domestic projects; and an examination of issues related to risk management, risk allocation, professional liability and insurance, and dispute resolution.
COMG 629. Sustainable Construction. 3 Credits.
Foundational information as to quantitative and qualitative metrics to the three pillars of sustainability (environment, economy, and society), specific applications of sustainability in the primary areas of civil engineering (environmental, geotechnical, structural, transportation, and construction management fields). Three credits, Fall.
COMG 630. Research Methods in Construction. 3 Credits.
The course explores the scientific research process including its methodologies, challenges and organization. It is designed to support construction management graduate students in developing responsible research projects and assist them in defining appropriate research methodologies. Topics include research proposal development, review of relevant literature, selection of research methodology, development of specific hypothesis, collection of data, data analysis, and preparation of research reports and presentations.
COMG 631. Cost Engineering. 3 Credits.
This course teaches the cost engineering tools that are typically encountered in construction management, and is based on the Construction Financial tools in Procore- one of the leading providers of cloud-based applications for construction. Students develop a thorough understanding of cost management theory, workflows, calculations, documentation, and reporting, and the intricate role of user permissions. Topics include cost control, budget, prime contract, commitments (subcontracts and purchase orders), change events, rough estimates, proposals, change orders, trade allowance tracking, budget transfers, prime invoices, commitment invoices, sub jobs, reporting, and internal auditing. The payment application process and retainage calculations are thoroughly explained. Transition to a Guaranteed Maximum Price (GMP) contract structure with associated holds and allowances. Learn to develop change management workflows based on sound cost engineering rules.
COMG 632. Building Information Modeling in Construction. 3 Credits.
The course will introduce the students to the applications of BIM in construction. In this course the student will learn the following.
1. How technology is used in construction, specifically for coordination, logistical, estimating and cost purposes (3D, 4D and 5D).
2. BIM and VDC Processes and Workflows during the construction phase.
3. Past, new and upcoming standards used to coordinate buildings and how technology keeps shaping the way we collaborate.
4. Tools and Applications used in construction that support BIM and VDC (Virtual Design and Construction).
Cross-listed with CEEN 432.
COMG 633. Construction cost Estimation: Purpose, Approach & Application. 3 Credits.
Construction cost estimates are an essential ingredient for managing a project beginning with feasibility through construction. Students will be engaged in a hands-on process to learn about the development and use of credible cost estimates in a myriad of settings including property acquisition and feasibility, design management, construction procurement, budgeting and cash flow by guiding students through the process of a cost estimate of a major development in New York City.
COMG 634. Infrastructure & Transportation Policymaking. 3 Credits.
This course will provide an understanding of core legal concepts and selected legal issues in
advancing urban transportation and infrastructure projects. Reviewing cutting edge projects in
NYC and in other cities, the course will seek to give students a better understanding of legal
liability risks and litigation vulnerabilities attendant to innovative projects. While primarily
focused on NYC, the course will also look at global and national trends and associated legal
issues. The course is designed to help planners, engineers, and lawyers learn how they can work
together as a team to get to a legal contextual “yes” on their projects.
COMG 635. BIM Application Planning for Construction Projects. 3 Credits.
Building Information Modeling (BIM) has been widely adopted in the building industry to help meet the demand for new and rehabilitated structures, and government agencies are requiring utilization of BIM technologies. Effective BIM application planning is essential to avoid project delays and cost overruns. This course introduces how BIM applications can be properly planned
according to the project delivery types and requirements.
COMG 636. Construction Engineering: Temporary Structures. 3 Credits.
The course will introduce the student to the design philosophy, relevant codes, standard industry practice, constructability, the safety and legal aspects related to the specialty field of Construction Engineering. The objective of the class is to develop an understanding of the importance of temporary structures in construction and how sound Construction Engineering practice fills the gap between design and construction. It also helps engineers to be better informed, more reliable and successful. Examples of Temporary Structures (not all-inclusive): Temporary Support Structures, Equipment Platforms and Trestles, Temporary Bridges, Roadway Decking, Shoring and Scaffolding, Concrete Formwork, Rebar Cages, Cranes and Rigging, Earth Retaining Systems, Demolition and Temporary Works Structural Lifting System. Graduate or senior standing. Prerequisites: Grades of B or better in both CIVL 309 and CIVL 310. Corequisites: CIVL 409 and CIVL 410.
COMG 637. Real Estate Development Principles for Engineers and Construction Managers. 3 Credits.
This course will cover real estate development principles that are relevant and necessary for construction managers and engineers to understand in-order to effectuate profitable real estate development projects. This course will benefit students who will work for real estate development companies and who wish to incorporate their construction management and engineering knowledge in the successful completion of small, medium and large real estate development projects. This course will also benefit construction managers and engineers who advise and consult with third party developers. The course will introduce students to the seven-stage real estate development process. Describe the inter-related development tasks. Topics to be covered will include land banking, packaging and development. Other topics will include real estate finance principles, disposition strategies, zoning and environmental factors.
Electrical and Computer Engineering Graduate Courses
ECEG 500. Wireless & RF Technology. 3 Credits.
Investigation of wireless and radio frequency technology including propagation characteristics, receivers and transmitters, circuit and devices. Nonlinear and noise analysis and non-ideal components. Measurement techniques including network and spectral analysis. Communications systems are emphasized but radar and RFID systems are also covered.
ECEG 521. Applied Parallel Computing. 3 Credits.
A software engineering centric course covering traditional parallel computing with message passing protocols, programming patterns for multi-core processors, application development on graphics processing units, and wide scale distributed computer systems.
ECEG 547. Optical Information Processing Systems. 3 Credits.
Response of linear spatially invariant systems; signal detection by matched filtering, mutual coherence, transform properties of linear optical imaging systems; optical information processing and filtering; linear holography.
ECEG 548. Fiber Optics Communication. 3 Credits.
Optical fiber structures and physical characteristics;
electromagnetic waveguiding properties and modes,
fiber materials, loss mechanisms, and dispersion.
Semiconductor laser and LED sources and photodetectors. Connectors,Fiber measurements,communication aspects of fiber transmission. Fiber system
examples and design procedures. Three credit.
ECEG 700. Industrial Electric Drives. 3 Credits.
Hands-on experiments and demonstrations in industrial electric drives, requirements placed by mechanical systems on electric drives, and their various applications such as flexible production systems, energy conservation, renewable energy and transportation. Power electronics in drives using switch-mode converters and pulse width modulation to synthesize the voltages in dc and ac motor drives. Design of a controller using Matlab/Simulink
Cross-listed with EECE 400.
ECEG 701. Signals, Systems, and Transforms I. 3 Credits.
Description and analysis of continuous-time signals and systems in the time and the frequency domains' Laplace transforms:inversion of transforms by coplex integrative; application to lumped and distributed parameter systems;analysis of continuous-time linear systems using state space techniques; controllability and observability : stability analysis.
Permission from Chair or Graduate Director is required.
ECEG 702. Signals, Systems and Transforms II. 3 Credits.
Discrete-time signals and systems; discrete convolution; sampling and quantizing;Z-transform;discrete
Fourier transform; Fast Fourier transform; state
space techniques for discrete-time systems; controllability and observability; stability. Three credit
Permission from Chair or Graduate Director is required.
ECEG 703. Trustworthy AI Applications in Electrical & Computer Engineering. 3 Credits.
Recently ethical, legal, and privacy consequences on humanity and environment of Artificial Intelligence (AI) has received increased attention. This course examines the trustworthiness of AI foundations related to data preparation, algorithm design, systems development, and deployment in electrical and computer engineering applications. Legal frames are investigated on how AI’s processes of development and deployment could be adapted for safety goals. As case studies, AI electrical and computer engineering applications will be examined for ethical aspects, fairness, privacy, and liability.
Cross-listed with EECE 403.
ECEG 704. Bioinstrumentation. 3 Credits.
Design principles of biomedical devices, bioelectronics, medical nanodevices, transducers, sensors, interface electronics, microcontrollers, and engineering programming. Signal modalities, bioelectrical signal monitoring, acquisition, analysis, and processing. Case studies and platform-based designs of medical devices, and instrumentation. Cross-listed with EECE 404.
ECEG 705. Applied Data Mining for Engineers. 3 Credits.
This course will provide students with an understanding of fundamental data mining methodologies and with the ability to formulate and solve problems with them. Special emphasis attention will be paid to practical, efficient and statistically sound techniques. Hands-on experience with data mining software, primarily R, to allow development of basic execution skills.
Cross-listed with EECE 478.
ECEG 706. Radiation and Optics. 3 Credits.
Radiation and simple radiating systems, wave optics, interference and diffraction: first order and
higher order coherence functions; Fourier optics,
properties of coherent optical beams. Three credit.
ECEG 709. Linear Mathematical Methods. 3 Credits.
Matrix calculations; linear systems and linear vector spaces; operators and their representation; function of operators and matrices; systems of differential equations; Eigen function representations; electrical engineering applications.
ECEG 710. Probability and Stochastic Processes. 3 Credits.
Random variables, distribution and density functions: functions of random variables;random processes'stationarity, ergodicity, correlation functions and power spectra' noise theory' system analysis with stochastic inputs: Gaussian, Markoff and Poisson processes.
Permission from Chair or Graduate Director is required.
ECEG 716. Fuzzy Systems. 3 Credits.
A study of the concept of fuzzy set theory including operations on fuzzy sets, fuzzy relations, fuzzy measures, fuzzy logic, with emphasis on engineering applications.
ECEG 717. Mobile Applications and Cybersecurity. 3 Credits.
The proliferation of smart, consumer mobile, and medical devices provide new security vulnerabilities. This course will focus on the security features and limitations on smartphones, mobile telecommunication systems, portable healthcare monitoring devices, and sensor networks. Materials will cover smartphone security, mobile location privacy, wireless sensor security, and security challenges in medical device industry.
Cross-listed with EECE 417.
ECEG 718. Intro to Power Electronics. 3 Credits.
Topics of importance in Power Electronics including techniques for the design of Electric Vehicles, highly efficient power supplies, power factor correction and motor control systems. High voltage DC to AC power conversion methods. Vehicle battery design and charging issues. Laboratory experience with semiconductor electronic switching devices and different motor types. Cross-listed with EECE 418.
ECEG 721. Embedded Systems. 3 Credits.
Design of embedded systems including system level
modeling/specification, and architecture synthesis,
compilation for area/power/performance, code
compression, scheduling and real-time operating
systems, and verification and functional validation
of embedded systems. Case studies and platform-based design encompassing microcontrollers/digital signal processors, distributed computing and
peripherals.
Cross-listed with EECE 321.
ECEG 722. Switching & Automata Theory. 3 Credits.
Analysis and synthesis of finite state machines; Turing and universal machines; information lossless machines; modular realization of machines; introduction to machine languages and computability.
ECEG 723. Software Engineering. 3 Credits.
The evolution of programming from art to science.
Program design tools and techniques; structured
programming and modular design; complexity, storage, and processing-time analysis; program testing
and debugging; software reliability, repair and availability. Three credit.
ECEG 724. Computer Architecture II. 3 Credits.
Computer Systems; multi processors and pipelined processors; array processors; computer networks; techniques for analysis of computer systems.
ECEG 726. Transmission of Digital Data. 3 Credits.
The Architecture of Digital DataTransmission Systems. The protocols:TCP/IP models.The physical layer:Wire, cable, fiber, terrestrial microwave and satellite microwave.The key concepts: bandwidth, noise, channel capacity and error detection and correction. The applications:modulation and modems. Multiplexing: FDM, slotted TDM, and statistical TDM.The data link: asynchronous and synchronous transmission, circuit switching, packet switching.
ECEG 727. Computer Network Operations. 3 Credits.
A structured coverage of Data and Computer Communications Networks. Protocols from the physical
and data link layers to the applications layer. Network modeling and fundamentals of performance
analysis. Time delay and reliability. Design issues,
tools,and procedures regarding capacity assignments,
terminal assignment, and switching node location.
Routing. Examples from high speed Local Area
Networks. Cross-listed with EECE 475.
ECEG 728. Operating Systems. 3 Credits.
A study of the modular design of operating systems;
the concept of interrupts, multiple processors and
I/O programming; memory management techniques, demand paging and virtual memory; job
scheduling algorithms, race conditions between
processes; file systems, analytic tools for the evaluation of operating systems.
ECEG 729. Artificial Intelligence Applications in Electrical & Computer Engineering. 3 Credits.
This course introduces methods for designing computer visualization, robotics, and IoT systems utilizing artificial intelligence, and machine vision. The following topics specifically related to the area of electrical and computer engineering will be covered: classification algorithms, information transference human/machines, single-agents and multi-agent Systems (MAS), expert systems, engineering knowledge presentation, automated planning, uncertain knowledge, reasoning in engineering design, simple and complex decision making, and time varying systems.
Cross-listed with EECE 471.
ECEG 730. Modern Portable Wireless Devices. 3 Credits.
Wireless communication systems for mobile and autonomous devices, healthcare monitoring devices, with emphasis on: cellular concept & trunking, spread spectrum systems security and multiple access techniques, speech coding, power control. Antennas and channel propagation characteristics and techniques for mitigation of propagation-related degradation factors. Analysis & design of systems following standards & protocols for the latest generation of wireless networks. Key examples of mobile portable devices, medical devices, system characteristics, and architecture design.
ECEG 731. Control Systems. 3 Credits.
Multivariable systems; controllability and observability; observer design and pole assignment; stability analysis.
ECEG 732. Optimal Control Theory. 3 Credits.
Performance measures: dynamic programming and its application to optimal control problems; calculus of variations; minimum principle; numerical techniques for finding optimal controls and trajectories.
ECEG 733. Digital Control System Analysis and Design. 3 Credits.
State space representation of discrete-time systems. Stability, observability, controllability. Digital controller design using transform techniques. State space design methods.
ECEG 734. Bulk Power System Operation. 3 Credits.
Operation of the bulk electric power system in North America. Basic types of high voltage equipment and station configurations. Methods and equipment to control power flow and voltage levels on the power systems. Cross-listed with EECE 434.
ECEG 735. Direct Energy Conversion. 3 Credits.
Principles of energy conversion; thermoelectric,
photovoltaic, and thermionic generators; magneto hydrodynamic power generators: solar and nuclear
energy conversion. Three credit.
ECEG 736. Power & Energy Systems. 3 Credits.
Modern power system/energy conversion operation. Models for interconnected power grids, transmission lines, transformers, and power flow analysis. Development of basic power flow digital simulation programs and running power labs. Cross-listed with EECE 477.
ECEG 737. NERC Standards & Operation. 3 Credits.
North American Electric Reliability Corporation (NERC) standards and related compliance concerns in relationship to operational principles of the power systems. Cross-listed with EECE 416.
ECEG 738. Protective Relays. 3 Credits.
Analysis of faulted power systems, symmetrical and asymmetrical systems, transient stability, emergency control and system protection.
Cross-listed with EECE 439.
ECEG 739. Relay Systems. 3 Credits.
Power system operation, three-phase system calculations and modeling of power system elements. Protective devices and their principles of operation. Pilot protection of transmission lines, generator protection and transformer protection.
ECEG 740. Electro-Optics. 3 Credits.
Propagation of rays and beams, optical resonators; theory of laser oscillation; modulation of laser beams; optical detection.
ECEG 741. Quantum Electronics. 3 Credits.
Interaction of radiation with matter, spontaneous and simulated emission and absorption; semi-classical theory of lasers; traveling wave and cavity lasers; laser saturation; noise limitation of light detectors and amplifiers.
ECEG 742. Computer Vision & Imaging. 3 Credits.
Detection, image formation, and engineering design of vision and imaging sensors and systems. Unmanned aerial and underwater imaging systems, biomedical image recognition, medical image understanding, inspection, and robotics applications. Cross-listed with EECE 442.
ECEG 743. Biomedical Imaging Systems. 3 Credits.
Engineering and physical principles of biomedical modalities, as applied to clinical diagnostics and pharmaceutics, gene arrays and Omics imaging technologies central to the detection process, system design, data analysis and classification. Clinical examples.
Cross-listed with EECE 443.
ECEG 744. Signal Detection & Estimation. 3 Credits.
Hypothesis testing; decision criteria: North and Wiener filtering; detection and estimation of signals with known and random parameters in white and colored Gaussian noise; recursive estimation of constant and time-varying signal parameters; Kalman-Bucy filtering; applications to communication systems, radar and biological signal processing. Prerequisite: ECEG 710.
ECEG 745. Medical Device Miniaturization. 3 Credits.
Engineering design of miniaturized medical devices, operating on electrical, and quantum principles, with reduced form factor and weight, while reducing power consumption and boosting performance. Integration trends, functionality, scalability, reconfigurability. Case studies and platform-based designs of miniaturized medical devices, such as medical implantable devices, heart monitors, pacemakers, video cameras.
Cross-listed with EECE 445.
ECEG 746. Digital Signal Processing. 3 Credits.
Discrete time signals and systems analysis' infinite and finite impulse response digital filter design techniques, random discrete time signals and spectral analysis, detection and estimation of signals in noise Kalman filters.
ECEG 747. Image Processing and Pattern Recognition. 3 Credits.
Digital image processing for manipulation and enhancement of images, development of advanced techniques for object recognition, object classification, image reconstruction, image compression, and feature extraction. Computational analytic and interpretive approaches to optimize extraction and use of imaging data. Engineering, robotic, industrial, medical, and remote sensing applications. Cross-listed with EECE 447.
ECEG 748. Applied Machine Learning for Electrical & Computer Engineering. 3 Credits.
Fundamental concepts, methods, and technologies of machine learning. Design, modelling, implementation, and optimization of hardware architectures for machine learning systems.
Machine/deep learning for signal detection, channel modeling, estimation, interference mitigation, and decoding. Performance analysis and evaluation of machine learning techniques in communication and networks systems. Machine learning for emerging communication systems and applications, such as drone systems, IoT, autonomous navigation and robotics, edge computing, smart cities, and vehicular networks.
Cross-listed with EECE 448.
ECEG 749. Unmanned Autonomous Vehicles. 3 Credits.
History of the UAV, basics of mechatronic design, common sensor payloads, high-definition cameras, sonars, lidars, vision and imaging design parameters. Major design challenges, laws and regulations, operations and safety. Cross-listed with EECE 449.
ECEG 750. Antenna Engineering. 3 Credits.
Analysis and design of various antenna types such as dipoles, horns, reflectors, apertures, microstrip and wire antennas. Electronically scanned arrays. Radiation pattern antenna impedance, gain, directivity, bandwidth, beam width, and frequency dependence. Reciprocity between receiving and transmitting antennas. Amplitude tapering to achieve desired sidelobe characteristics.
ECEG 751. Microwave Circuits. 3 Credits.
Transmission lines and waveguides; circuit representation of waveguide systems using impedance and scattering formulation , impedance transformation and matching; Faraday rotation in ferrites; passive microwave devices; terminations; attenuators; couplers, circulators, the magic tee; emphasis on developing a circuit view point for analyzing microwave devices.
ECEG 752. Pharmaceutical Bioinformatics. 3 Credits.
Computer based technologies and informatics and computational methods that interfaces with all areas related to the discovery and development drugs, for understanding their functions, mapping processes of the cells and understanding how to use these properties to effectively develop novel drugs.
ECEG 753. Applied Bioinformatics. 3 Credits.
Bioinformatics principles applied to microscopic and biomedical image acquisition methods and applications, methods and applications of image analysis and related machine learning, pattern recognition and data mining techniques, image oriented multidimensional. Methods and applications for the analysis of post-translational modifications, proteomic, mass spectroscopic, and chemoinformatic data. Cross-listed with EECE 453.
ECEG 755. Bionanophotonics. 3 Credits.
Nanoparticles for optical bioimaging, optical diagnostics and light guided and activated therapy. Use of nanoparticles platforms for intracellular diagnostics and targeted drug delivery, PEBBLE nonsensors.
Cross-listed with EECE 455.
ECEG 756. Drug Delivery Systems. 3 Credits.
Instrumentation, devices, and techniques to characterize the physiochemical, optical properties, and in vitro immunological, biological, and stability characteristics of drugs delivery, proteins, and nanomaterials. Cross-listed with EECE 456.
ECEG 757. Bioinspired Robotic Vision Systems. 3 Credits.
Animal vision combined with human vision and cognition can provide a source of inspiration for the design and development of novel computational, efficient, and robust electro-optical vision systems. The underlying philosophy of this course is to introduce new evolutionary cognitive vision systems that use artificial neurons to mimic the functions and characteristics of the human brain and drive improvements in costs, efficiency, and processing.
Students taking this course will develop an integrative knowledge of bioinspired vision systems and artificial intelligence algorithms as well as the impact of biomimetic vision on a large gamma of imaging and robotic vision systems, and modalities. As a result, the students will be inspired towards the conception, and design of novel bio-inspired vision robotic applications, systems, and techniques for different segments of industry, autonomous systems, healthcare, defense, and consumer electronics.
Cross-listed with EECE 457.
ECEG 758. Cybersecurity Systems. 3 Credits.
Cybersecurity as it relates to systems and then on the engineering principles for secure systems. The course focuses on the differences between threats and vulnerabilities, examples of cybersecurity attacks and events, frameworks, requirements and principles for securing systems.
Cross-listed with EECE 458.
ECEG 759. Quantum Cryptography. 3 Credits.
Methods that seeks to solve the problem of how to securely send cryptographic keys between two parties by encoding them within light particles, or photons. Quantum cryptography and key distribution technique.
ECEG 760. Data and Applications Security. 3 Credits.
This course provides an in-depth exploration of security principles and techniques for protecting data and applications. Topics include confidentiality, access control, privacy and trust management, secure databases and distributed system, data privacy. Cross-listed with EECE 462.
Permission from Chair or Graduate Director is required.
ECEG 761. Network Security Systems. 3 Credits.
Theoretical and practical aspects of network security. Security of TCP/IP applications; firewalls; wireless LAN security; denial-of-service defense.
Cross-listed with EECE 461.
ECEG 762. Modeling and Simulation. 3 Credits.
Review of probability distributions;random number
testing and generation; mathematical models;
Markov chains; simulation methods; data analysis;
Monte Carlo methods.
ECEG 763. Data Struct & Cmpt Algorithms. 3 Credits.
Advanced data structures, binary search trees, heaps, priority queues, heap sort, AVL Trees, Red-Black Trees, B-Trees, hashing, graphs algorithms. Algorithm techniques include algorithm complexity analysis, divide and conquer, greedy algorithm and dynamic programming.
ECEG 764. Data Base Mgmt Systems(DBMS). 3 Credits.
Software and hardware design problems for DBMS; an overview of database systems, data manipulation languages, normal forms, machine architectures. This course will focus on basics such as the relational algebra and data model, schema normalization, query optimization, and transactions. Case studies on open-source and commercial database systems are used to illustrate these techniques and trade-offs. More topics can be added by the instructor.
ECEG 765. Computer Graphics. 3 Credits.
Basic concepts of computer graphics systems including display devices, graphics software and the display of solid object. Point plotting procedures; line drawing algorithms and circle generators. Displays and controllers; storage and refresh devices. Two dimensional transformations; clipping and windowing. Graphics software; windowing functions, display files; geometric models. Interactive raster graphics. Three dimensional graphics including surface display, perspective and hidden surface removal. Cross-listed with EECE 436.
ECEG 766. Mobile Communication Networks. 3 Credits.
This course provides an overview of the latest developments and trends in wireless mobile communications, and addresses the impact of wireless transmission and user mobility on the design and management of wireless mobile systems. In addition to study the technical issues and state-of-the-art techniques in the operation and management of mobile communications networks; To learn the engineering principles and system evaluation methods used in the design of mobile communications networks. This course will cover selected Mobile Communications Networks topics in each of the following areas: Overview of wireless communications, Cellular wireless networks, 2G, 2.5G and 3G cellular networks, Long Term Evolution (LTE) - 3.5G, Future of 5G cellular networks, Wireless local area networks (Wi-Fi), Wireless personal area networks (Bluetooth, UWB, ZigBee), and Mobility management and radio resource management.
ECEG 767. Big Data & Deep Learning for Electrical & Computer Engineering. 3 Credits.
This class will focus of how to extract actionable, non-trivial knowledge from unstructured, heterogenous, massive number of data sets using machine learning and deep learning techniques. On the tool's side, we will cover the basic systems and techniques to store large volumes of data and modern systems for cluster computing based on MapReduce patterns such as Hadoop MapReduce, Apache Spark, and Flink. FPGAs, GPUs, and neuromorphic processors with emphasis on edge, fog, and cloud computing architectures, industry, manufacturing communications, autonomous navigation systems, IoT, systems, remote sensing.
Cross-listed with EECE 460.
ECEG 768. Green Energy Sources. 3 Credits.
This course presents basic information on Energy outlook, interconnection issues of distributed alternate energy resources, efficiency of power production, electric energy conversion and storage (fossil fuel, nuclear, hydro, solar, fuel cells, wind, and batteries). This course also explores the different energy link integration methodologies using Matlab/Simulink.
Cross-listed with EECE 466.
ECEG 769. Introduction to Remote Sensing. 3 Credits.
This course is intended to provide an introduction to remote sensing of objects with applications in defense and environment. The course covers the basic principles of image sensors and techniques, image interpretation, remote sensing theory, and digital image analysis in relation to optical, thermal and microwave remote sensing systems. Examples of remote sensing applications will be presented along with methods for obtaining quantitative information from remote sensing imagery. Students will be expected to engage in a special topic evaluation.
Cross-listed with EECE 469.
ECEG 770. Intro to Space Systems. 3 Credits.
This course is intended to provide the fundamental principles of space systems, in terms of electro-optical sensing, robotic vision, and imaging. Critical space missions such as monitoring of the integrity of spacecraft structures, detection of debris, object recognition and classification will be presented and discussed. Defense and commercial applications will be introduced and discussed. Cross-listed with EECE 470.
ECEG 771. Cloud Computing & Physical Sys. 3 Credits.
This course provides a comprehensive study of computer cloud concepts, architectures, and physical systems, technical challenges and advantages across the varied cloud service models. The course covers the essentials necessary to leverage cloud computing in a pragmatic way so that computational efficiency, cost, global scale, and productivity can be fully realized. Industrial and consumer applications and services, such as e-commerce, Industry 4, Internet of Things (IoT), video and audio streaming, will be presented.
ECEG 777. Quantum Computing. 3 Credits.
This course provides a theoretical and practical treatment of quantum computing. Topics covered include brief quantum mechanics history, and the postulates of quantum theory. Dirac notation, quantum operators, composition, entanglement, and measurements. Quantum Computing via quantum circuit model: Description of qubit and universal set of gates. Simple quantum protocols: teleportation, superdense coding. The Deutsch-Jozsa Algorithm and the Bernstein-Vazirani Algorithm. Grover’s algorithm for searching. Entanglement and Bell’s theorem. Quantum communications and quantum error correction. Applications in cybersecurity, cryptography, financial modeling, drug development and artificial intelligence.
Cross-listed with EECE 465.
ECEG 779. Remote Sens Sys Techniques. 3 Credits.
This course is intended to provide the engineering and physical principles to remote sensing of objects. This course covers the principles of image sensors and techniques, image formation, interpretation and analysis, interpretation, remote sensing theory, digital image analysis. Machine learning and deep learning techniques will be applied for object recognition and classification. Defense, commercial and environmental applications will be introduced and discussed.
ECEG 780. Space Systems Engineering. 3 Credits.
This course is intended to provide the engineering and physical principles for the design of space systems. Enhanced understanding of the big picture of space systems engineering processes and their application in the mission life cycle will be presented; with emphasis on the electro-optical sensing, detection, classification, monitoring of space resident objects (SRO)s. Advanced machine learning and deep learning techniques will be presented for object detection, tracking, recognition and classification. Defense, and commercial applications will be introduced and discussed.
ECEG 781. Computer Architecture I. 3 Credits.
The evolution of computer architecture spanning from the CISC machines to the RISC machines, from the pipelined to superscalar architectures; from multithreaded to parallel processors. Hardware and software processor design trade-off and performance evaluation; Data representation and instruction sets. Control design: Hardware and microprogrammed. Memory organization: Virtual segmentation and cache; system organization: Bus control and I/O. Permission from Chair or Graduate Director is required.
ECEG 782. Grid Integration of Wind Energy. 3 Credits.
The objective of this course is to familiarize students with various essential aspects in harnessing wind energy and its conversion and delivery as electricity. A broad understanding of essential elements in wind-electric systems: turbines, wind- plant development and their integration into the utility grid, environmental impacts, wind forecasting and more.
Cross-listed with EECE 482.
ECEG 790. Advanced Topics in Artificial Intelligence (AI) in Electrical & Computer Engineering. 3 Credits.
The course explores advanced Artificial Intelligence (AI) systems and tool chains on a variety of levels. The focus of the course is to utilize AI solutions to solve large-scale electrical and computer engineering problems. Topics of current interest to graduate electrical engineering and computer engineering students. The subject matter of the course will be announced in advance of the semester.
ECEG 792. Adv Proj Electrical/Comp Engr. 3 Credits.
A project course of an advanced nature conducted by assigning individual investigations to be performed by the student under the supervision of a staff member; consists of theoretical and experimental investigations in specialized fields of electrical engineering of interest to the student.
ECEG 793. Advanced Study in Electrical or Computer Engineering. 3 Credits.
Individual study of a selected topic in electrical engineering under the supervision of a staff member.
ECEG 794. Special Topic: in Electrical Engineering. 3 Credits.
Topics of current interest to graduate Electrical Engineering students; subject matter will be announced in advance of semester offering.
ECEG 795. Special Topic: in Computer Engineering. 3 Credits.
Topics of current interest to graduate Computer Engineering students; subject matter will be announced in advance of semester offering.
ECEG 796. Special Topic: in Electrical and Computer Engineering. 3 Credits.
Topics of current interest to graduate Electrical and Computer Engineering students; subject matter will be announced in advance of semester offering. Three credits.
ECEG 799. Master's Thesis Research. 1-6 Credit.
A Master of Science thesis option entails 24 course credits and 6 master’s research credits, namely, ECEG 799. Research undertaken under the thesis option should exhibit a thorough understanding of advanced scientific thought and an ability to apply advanced engineering design principles, and planning.
Engineering -Graduate Courses
ENGG 510. Logic of Value Creation. 3 Credits.
A 21st century school of thought that helps unlock the potential of engineering curricula by
establishing the pragmatic relationship between philosophy and science and engineering towards
business applications. This course is a method of transitioning graduate students towards graduate level thinking and mindset.
Graduate students only.
ENGG 602. Internship for Engineering Graduate Students. 1-3 Credit.
ENGG 610. Numerical Methods in Engineering. 3 Credits.
Formulation of numerical techniques for solution of engineering problems; typical subject material includes linear and nonlinear equations, systems of equations, boundary value and initial value problems in ordinary and partial differential equations, matrix algebra, etc. Applications from various engineering disciplines are emphasized and computer solutions stressed.
Prerequisite: Permission of the Instructor.
ENGG 611. Solar Energy Systems. 3 Credits.
Study of solar energy systems with emphasis on solar heating and cooling of buildings, design of various types fo solar collectors using different materials, working fluids and geometries'energy storage systems for solar assisted heat pumps, use of solar energy in electricity generation.
ENGG 612. Finite Element Methods. 3 Credits.
Derivation of element equations using direct, variational, and residual methods; multidimensional problems in the steady state and transient domains; use of general purpose finite element computer programs; applications from a variety of engineering disciplines.
Prerequisite:Permission of the Instructor.
ENGG 614. Engineering Mathematics. 3 Credits.
Mathematical formulation of problems of importance to engineering; solutions of ordinary and partial differential equations; mathematical series and orthogonal functions and their applications; matrix algebra; applications from a variety of engineering disciplines are emphasized.
Prerequisite: Permission of the Instructor.
ENGG 620. Applications of Instrumentation and Data Acquisition. 3 Credits.
Operation, application, and selection of engineering instruments for measuring common engineering variables, e.g. position, velocity, temperatures, pH, force, pressure, strain, flow rate, light intensity, concentration, etc; sensors, data acquisition and processing. Output devices, including logic and actuator operation and selection. Computer-based data acquisition and automated analysis are considered.
ENGG 630. System Control. 3 Credits.
Formulation of process models; transfer functions; multivariable systems; linear control and feedback systems; stability; steady state optional control; adaptive control; applications from a variety of engineering disciplines.
Prerequisite: Permission of the Instructor.
ENGG 632. Modern Engineering Computations. 3 Credits.
Applications of contemporary computer software to increase speed, improve comprehension, and enhance presentation; of results when analyzing, modeling and solving a wide variety of engineering problems in various branches of engineering and computer science.
Prerequisite: Permission of the Instructor.
ENGG 640. Information Processing and Technology. 3 Credits.
Examination of the technological issues, including design of integrated engineering information systems and environments. Topics to be taken from: the computer as an organizational information system; computer-based information system; manufacturing information systems; the virtual office; databases and database systems; knowledge-based systems; technology and role of the internet in integrated engineering information systems; organizational system theory and methodologies.
ENGG 650. Engineering Economics. 3 Credits.
Techniques for estimating investment and operating expenses; profitability analysis including depreciation and taxes in cash flow; methods for comparing alternate investments; market estimation and location efforts; application from a variety of engineering disciplines.
ENGG 651. Principles in Public Health. 3 Credits.
This course will cover basic principles in public health with emphasis on topics for engineering professionals. Fundamental concepts in the core public health sciences of epidemiology and biostatistics, as well as publice health biology and toxicology, will be presented. Applications of these principles to issues of human exposure to environmental agents and the role of the engineering disciplines will be examined. Human health risk assessment and the implications on regulatory policy will be discussed. Three credits.
ENGG 652. Project Management. 3 Credits.
Study of the content, planning, and control of an industrial project; comparison of functional management and project management, the role of the Engineering Manager, project organization structures, project planning, use of critical path methods and project control; emphasis on the project management concept and its applicability to a wide range of industrial projects; the case study method is used to examine a variety of specific management issues, e.g. staffing, controlling and directing the project, identifying and resolving critical issues, anticipating and solving team personnel problems, etc.; various managerial decision tools and project control methods, such as CPM and PERT are discussed.
ENGG 653. Statistical Decision Making. 3 Credits.
Methods dealing with the collection, tabulation, summarization, and presentation of data. Inferential statistics; reaching conclusions and making estimates about populations based upon sample information. Hypothesis testing is explored as a basis for decision-making. Design experiments to learn more about the natural world and how to model physical relationships. Engineering quality into a product.
ENGG 654. Quality Management for Engineers. 3 Credits.
Methods for improving the quality of engineered products and processes. Total Quality Management (TQM), Quality Function Deployment (QFD), Concurrent Engineering, Basic Statistics, Acceptance Sampling, Statistic Process Control (SPC), Reliability, Taguchi Techniques, introduction to Quality Assurance.
ENGG 656. Engineering Optimization. 3 Credits.
Introduction to optimization problems; mathematical preliminaries; unconstrained nonlinear optimization; one-dimensional search methods; equality and inequality constrained nonlinear optimization; linear programming; engineering applications to cost minimization, optimum system design and operation.
ENGG 658. Legal Aspects of Engineering. 3 Credits.
Basic legal doctrines, professional-client relationship, design and practice problems. Fundamental concepts of contract law.
Topics include American judicial system, contracts, quasicontracts, agency, licensing, client obligations, construction process, licensing, client obligations, construction process, liability of engineers, copyrights, patents and trade secrets.
ENGG 660. Engineering Ethics. 3 Credits.
Ethical issues in engineering are examined such as whistle blowing, computer ethics, employer/employee relationship and responsibilities, use of technology and the environment, public safety, codes of ethics. Case studies are emphasized.
ENGG 670. Pollution Prevention. 3 Credits.
Regulations, advantages and disadvantages of pollution prevention: EPA'S pollution prevention hierarchy, including source reduction, recycling, control and ultimate disposal; Multimedia approaches and total systems analysis of pollution prevention options; applications to specific processes and industries from various engineering disciplines.
ENGG 672. Accident and Emergency Management. 3 Credits.
Engineering process safety, including emergency
planning and response; fires, explosions and other
accidents; dispersion fundamentals, applications and
analysis; hazard and risk assessment; legal considerations;
examples from various engineering disciplines.
Three credits.
ENGG 674. Green Engineering Design. 3 Credits.
Multi-disciplinary considerations and techniques for greener engineering design; historical perspective of the industrial revolution and the impacts of industrialization; industrial revolution and the impacts of industrialization; industrial activity and the environment, including energy usage and resource depletion; improved industrial and municipal (POTW) operations, including process design and development; green engineering economics, including life cycle cost assessment; design for the environment, including waste prevention, water and energy conservation and packaging; wastewater treatment, air pollution and fugitive emissions control, and solid water disposal methods; and, sustainable development and the role of engineers.
ENGG 676. Sustainable Material Selection. 3 Credits.
The first half of the class covers basic material selection issues such as material characteristics, and behavior for all types of engineering materials (metals, polymers, ceramics/glasses, and composites), along with how they fail and respond to environmental conditions (e.g. corrosion). In the second half of the class attention will be paid to material selection with particular emphasis being placed on ecological considerations such as recycling, reusability, carbon footprints, and pollution issues.
ENGG 678. Sustainable Energy. 3 Credits.
Options for sustainable energy utilization are discussed with regard to the current state of the technology, the opportunities for future development and the potential environmental and economic impact. This course will focus on specific renewable energies and sustainable energy solutions, such as, solar energy, utilization of wind power, geothermal and oceanic thermal processes, hydroelectric tidal and wave technologies, biofuels, and a systems approach to sustainable energy solutions. Pre-requisite: Consent of Instructor.
ENGG 679. Modeling Sustainable Energy Systems. 3 Credits.
This course covers modeling of sustainable energy utilization and will complement the content of Sustainable Energy (ENGG 678). Modeling tools such as ASPEN-HYSYS, STELLA-Silver or Gold, and EXCEL are used to assess the current state of the technology, opportunities for future development and potential environmental and economic impact. Case studies will be developed and evaluated in the course, thus. The technologies modeled will be fermentation, reforming, partial oxidation, Fischer-Tropsch synthesis, methanation via Sabatier and combustion. This course will also focus on computer modelling of specific renewable energies and sustainable energy solutions, such as, solar energy, utilization of wind power, geothermal and oceanic thermal processes, hydroelectric tidal and wave technologies, biofuels, using a systems approach to sustainable energy solutions.
Prerequisite: Consent of Instructor.
Recommended Prerequisites
CHML 209, CHML 305, CHML 306, ENGS 116., ENGG 678.
ENGG 680. Advanced Strength of Materials. 3 Credits.
Stresses in multidimensions; symmetrical and unsymmetrical bending; shear center; curved beams; beams on elastic foundation; beam columns; thin plates; torsion of noncircular sections; thin walled cylinders; general and symmetric bending of straight bars, curved beam and plates; applications from several engineering disciplines.
Prerequisites: Undergraduate solid mechanics course.
ENGG 682. Applied Heat Transfer. 3 Credits.
Topics in process heat transfer including: steady state and transient conduction, free and forced convection, radiation and combined models, heat transfer with phase change; applications come from a variety of engineering disciplines and can include: design and rating of various heat exchangers, condensers and evaporators; heat pipes; solar collectors; electronic cooling, etc. Prerequisite: Undergraduate heat transfer course.
ENGG 695. Advanced Topics: in Engineering. 3 Credits.
ENGG 696. Spl Tpc:. 3 Credits.
Topics of current interest to graduate engineering students. Subject matter will be announced in advance of semester offering.
ENGG 700. Creativity & Innovation. 3 Credits.
This course invites each student to learn some of the early work in innovation and creativity while exploring their own creativity skills. Being mindful of a diversity of possible majors within the student body, each is asked to consider innovation and creativity within their own major as well as in general.Through this course, students will enhance their skills in creativity and innovative problem solving and thinking with an aim to increasing the originality of their ideas and thereby help generate and sustain high levels of innovation both in a start-up and corporate environments. In addition, the course will lay the foundation of the basic principles of innovation management, open innovation and design thinking, a key cornerstone of evolving corporate innovation strategies.Students in this course will be expected to submit a special topic assignment. Pre-requisite: Permission from Instructor.
ENGG 741. Special Topic: in Mechanical Engineering. 3 Credits.
Environmental Engineering-Graduate Courses
ENVG 500. Modeling of Civil & Environmental Engineering Problems. 3 Credits.
Construction of analytical models that produce the classical formulas of structural, hydraulic, water supply and water and wastewater treatment engineering. Ordinary and partial differential equations, vectors, tensors and matrices, systems of linear equations and boundary value problems. Prerequisites: Differential Equations, Fluid Mechanics, Introductory Solid Mechanics. For seniors and/or graduate students. One three-hour lecture each week.
ENVG 505. Surface Water Quality Modeling. 3 Credits.
Principles governing the transport and fate of contaminants in rivers, streams, lakes and reservoirs. Water quality standards, transport processes, water quality modeling for water-borne disease, dissolved oxygen, and nutrient enrichment. Engineering controls to meet water quality objectives and case studies are presented. Computer solutions to some problems are required. Cross-listed with ENVL 425.
ENVG 506. Water and Wastewater Treatment Processes. 3 Credits.
Study of the fundamental principles used to treat both drinking water and wastewater. Drinking water treatment principles include Strokes law for particle settling, theory of coagulation and flocculation, porous media filtration, and disinfection. Principles for wastewater treatment include reactor analyses, growth and degradation kinetics for biological oxidation processes anaerobic digestion of complex organics, and hindered and compression settling.
Prerequisite: ENGS 204.
ENVG 507. Groundwater. 3 Credits.
Basic principles of groundwater hydrology and subsurface contaminant transport. Construction and use of flow nets; pumping well and aquifer response under confirmed and unconfirmed conditions. Contaminant sources, transport, and retardation; the behavior of nonaqueous phase liquids (NAPLS) in the subsurface. Design of groundwater extraction systems, subsurface cutoff walls, caps, and emerging technologies for soil treatment.
Prerequisite: ENGS 204
Cross-listed with ENVL 407.
ENVG 508. Environmental Chemistry. 3 Credits.
An introduction to the chemistry of natural waters and the atmosphere. The application of the principles of physical and analytical chemistry to the solution of problems related to environmental engineering and science. Includes a unit on relevant properties of organic compounds that are relevant to the environment and public health. Cross-listed with ENVL 409.
ENVG 509. Environmental GeoChemistry. 3 Credits.
Review of fundamental geologic processes. Solution-mineral equilibria of carbonates and silicates. Surface chemistry at the solution-mineral interface. Relevant phase equilibria, weathering and soils, inorganic and organic sedimentation and diagenesis, isotope geochemistry, and metamorphism.
ENVG 510. Hazardous Waste Management. 3 Credits.
Fundamentals of hazardous waste management and treatment design. Includes review of current hazardous waste regulations, groundwater and air contaminant fate and transport concepts, and risk assessment. Primary focus on the design of treatment processes including air stripping of volatile compounds, soil vapor extraction, adsorption, bioremediation of contained aquifers and soils, and incineration. Emerging treatment technologies will also be presented.
ENVG 530. Water Infrastructure Systems Analytics. 3 Credits.
The course will cover various analytics techniques for optimal planning and operation of water resources systems. Applied techniques include advanced regression, machine learning, nonlinear programming and meta heuristic algorithms, and multi-criteria approach for water resources management.
Cross-listed with CIVG 530, CEEN 430.
ENVG 546. Coastal Engineering. 3 Credits.
This is an introductory course in coastal engineering. It blends environmental and civil engineering topics and has a strong focus on design. Topics covered include: Tides, Waves, Storm Surge, Shore Protection, Breakwaters, Harbors, Beach Protection, Sediment Transport, Beach Restoration, Floodwalls, Levees. Equivalent to CEEN 446 and CIVG 546.
ENVG 702. Air Quality Analysis. 3 Credits.
Basic air pollution concepts; the Clean Air Act; basic meteorology; basic analytical methods and concepts for air quality analysis; the Gaussian Plume Model;Plume Rise; Traffic Impact Analysis; Environmental Impact Analysis and air quality; Airshed Models; Smog and Ozone Models; Indoor Air Quality analysis.
ENVG 703. Environmental Fate and Effects of Toxic Contaminants. 3 Credits.
Principles governing the transport, fate and effect of toxic organic contaminants in surface water systems. Topics include: physical-chemical characterization of toxic organic contaminants; phase behavior and chemical transformation kinetics; sediment contamination and transport; bioaccumulation in aquatic food webs; human and ecological risk assessment; sediment remediation technologies and environmental site remediation. Mathematical solutions and computer models are used throughout the course.
ENVG 704. Advanced Water Modeling Quality. 3 Credits.
Advanced water quality modeling for metals in surface waters and sediments. Topics include: metal speciation; metal binding to natural organic matter; metal binding in sediment; aquatic toxicity; human health effects; chemical speciation-transport modeling; critical loads; metal-sulfide oxidation kinetics; cycling of redox sensitive metals (e.g., As, Cr, Se); Hg cycling and bioaccumulation; acidification of surface waters. Computer modeling based on the Biotic Ligand Model (BLM) and the Tableau Input Coupled Kinetic Equilibrium Transport (TICKET) model will be used throughout the course.
ENVG 706. Water Chemistry. 3 Credits.
Principles of chemical equilibrium are applied to quantitatively describe the chemical composition of natural waters and engineered aquatic systems. These tolls are applied to solve environmental engineering problems related to surface and groundwater quality and water and wastewater treatment. Topics include chemical thermodynamics, acid/base equilibrium, the carbonate system, metal complexation, precipitation/dissolution of minerals and oxidation/reduction reactions.
ENVG 708. Environmental Biotechnology. 3 Credits.
Fundamentals of biotechnology and its applications to environmental engineering. Principles of microbial genetics, microbial ecology and biochemistry and how they relate to biological treatment of water, air, wastewater and hazardous wastes. Biofilm process fundamentals and applications. Molecular methods and their use in the study and analysis of ideal and non-ideal biological systems. Specific applications to public health, bioremediation, biosolids reuse and industrial treatment. Review and evaluation of Advanced water, wastewater and remediation processes that utilize biotechnology.
Prerequisite: ENVL 506.
ENVG 710. Environmental Organic Chemistry. 3 Credits.
The structure and nomenclature of relevant organic compounds. Kinetics, fate and transport of xenophobic chemicals in the environment. Important hydrolytic, photolytic, oxidative and reductive reactions. Use of quantitative structure activity relationships (QSARs) in predicting toxicity and related properties of various classes of environmentally active organic compounds.
ENVG 712. Advanced Geohydrology. 3 Credits.
Review of basic principles. Introduction to numerical groundwater modeling; application of Visual MODFLOW to flow and transport modeling. Pumping well and aquifer response under confined, unconfined, and semi-confined conditions. Hydraulic conductivity testing; borehole and surface geophysical methods for site characterization.
Prerequisite: ENVL 507.
ENVG 715. Effect of Climate Change on Water Quality. 3 Credits.
Effects of climate change on water quality in surface waters. Topics include: an introduction to climate change and climate projections; impacts of climate change on NYC drinking water reservoirs (e.g., increases in turbidity, nutrient loads, eutrophication); increased demand and sources of Technology Critical Elements (TCEs) to meet the green energy transition; expected increase in metals to the environment (e.g., increased mining activity, societal use and end-of-life disposal); effect of increased temperature and changes in precipitation patterns on metal exposure and toxicity.
ENVG 718. Biological Treatment Wastewaters. 3 Credits.
Application of biological processes to all types of water and waste streams including: municipal and industrial wastewater, drinking water, and hazardous waste streams. Treatment processes and models, aerobic, facultative and anaerobic processes, cell synthesis and respiration, oxygen and nutrient requirements. Biological nitrogen removal, enhanced biological phosphorus removal, attached growth systems, bioremediation and process designs. Anaerobic treatment with biogas recovery. Course will also cover process trouble-shooting, and operation and maintenance issues associated with many treatment technologies.
ENVG 721. Environmental Sustainability: Water Reuse & Resource Recovery. 3 Credits.
Fundamentals of wastewater reuse including: State and Federal water reclamation and reuse regulation; municipal, industrial and storm water reuse; public health aspects of reuse; and economics of reuse. Design and operation of specific reuse technologies including membrane systems, advanced oxidation systems, etc. Regulations and technologies addressing beneficial reuse of biosolids and drinking water residuals, including land application and soil conditioning, will also be covered. Finally, the role of water and residuals reuse in industrial, local and global sustainability will be addressed.
Prerequisite: ENVL 506.
ENVG 722. Subsurface Bioremediation. 3 Credits.
Fundamentals of sub-surface processes, abiotic and biotic, which contribute to the bioremediation of common subsurface contaminants including petroleum hydrocarbons, chlorinated solvents, nitroaromatics, heavy metals and redionuclides. Areas of study will include multi-phase flow, convective transport, sortion/desorption, phase partitioning, as well as microbal ecology, biodegradation kinetics, biomass growth and degradative metabolisms. Specific examples of intrinsic and engineered bioremediation of aromatics and chlorinated solvents will be included. The course will utilize a text book, web-based tutorial material and three interactive bioremediation spread-sheet based models. The course will meet only three times during the semester; all other correspondence will be carried out via email.
Prerequisite: ENVG 506, ENVG 507.
ENVG 730. Seminar. 1 Credit.
ENVG 731. Special Topics. 3 Credits.
Guided study of approved advanced topics related to environmental engineering or science.
ENVG 732. Thesis. 1-6 Credit.
A technical paper under faculty supervision based upon original study or research, an original design, or a thorough analysis of an existing or proposed system of either a scientific or engineering nature.
ENVG 736. Environmental Advanced Unit Operations. 3 Credits.
Advanced study of the processes used for water treatment and purification with an emphasis on design principles and process modeling. Processes covered include carbon adsorption, ion exchange, chemical oxidation of inorganic and organic chemicals, disinfection using chlorine, ozone and ultraviolet light, strategies for control of disinfection byproducts, and chemical precipitation. Spring: Prerequisite ENVG 506.
ENVG 739. Experimental Analysis in Environmental Engineering. 3 Credits.
This course is an advanced laboratory covering principles of modern experimental and analytical techniques and their applications to problems in environmental engineering. Topics include the measurement of water quality parameters, determination of contaminant partition coefficients and kinetics of transformation reactions in the environment.
Prerequisite: ENVG 705.
ENVG 740. Advanced Hydraulic Design. 3 Credits.
Introduction to advanced concepts in hydraulic design. Use of computer software to analyze and design stormwater, sanitary sewer and water distribution systems. Hydraulic analysis of a river using HECRAS. A project-oriented design course.
This course utilizes EPA SWIMM and EPANET software, and Corps of Engineers HECRAS software.
ENVG 741. Special Topics. 3 Credits.
ENVG 744. Emerging Issues in Environmental Engineering and Public Health. 3 Credits.
Review of innovative and emerging technologies/tools in environmental engineering and public health. Subjects will
include the study of emerging contaminants in the environment. Fundamentals of cutting-edge water, wastewater,
and resource recovery technologies. Power conservation and generation from water/wastewater treatment
systems. Additionally, issues associated with in-premise air and water quality will be covered, including: treatment
of building air to remove volatile organic compounds, bacteria and viruses; and treatment of in-premise plumbing
to manage microbial and chemical concerns. Finally, tools and concepts related to Life cycle assessment and its
application in decisions making associate with the selection of new technologies based on socio-economic and
environmental factors. Prerequisites: ENVG 506, ENVG 508.
Mechanical Engineering-Graduate Courses
MECG 512. Energy Conversion. 3 Credits.
Overview of thermodynamic concepts, application
of first and second laws of thermodynamics to improve
efficiency of gas turbines and power generation
systems, combustion of hydrocarbon fuels,
reacting systems, conventional and innovative energy
conversion applications such as solar, wind,
wave, tidal, ocean thermal, and geothermal energy.
Three credits.
MECG 513. Introduction to Nuclear Power Plant systems. 3 Credits.
Study of current in-service nuclear plant design, including nuclear plant reactor, reactor auxiliaries, secondary steam plant, and electrical systems; review of the design bases for major systems and components in current operating nuclear plants; evaluation of how the systems function in an integrated fashion. Case studies are used to explore historical engineering and operational issues. New vendor nuclear plant designs are explored and compared to current designs. Three credits
Cross-listed with: MECH 471.
MECG 515. Energy Dynamics of Green Building I. 3 Credits.
The course emphasizes understanding the impact that various environmental systems have on the building design and operation process. Site and climate analysis will be the starting point for defining performance criteria of the built environment. Students will be introduced to analysis tools for interpreting weather data and the fundamentals of occupant comfort. Criteria used to define internal environmental conditions will be discussed as design goal to which all building elements must strive to achieve through systems integration. Three credits.
MECG 516. Turbomachinery. 3 Credits.
Review of fundamentals of fluid mechanics, dimensional analysis in fluid machinery; classification and characteristics of fluid machinery (positive displacement, radial, mixed flow and axial); efficiencies; incompressible flow machines (pumps and hydraulic turbines); cavitation; compressible flow machines (compressors and gas turbines); choking and surge. Cross-listed with MECH 488.
MECG 525. Analysis and Design Hvac Systems. 3 Credits.
Indoor air quality and human comfort, economy and environmental protection requirements. Heating and cooling loads. Introduction to equipment selection and system analysis.
MECG 528. Combustion Systems. 3 Credits.
Basic Cycles for spark ignition and compression ignition engines. Combustion chemistry, flame temperataures, fuels and heating values. Actual versus ideal cycles, equilibrium charts, knock and engine variables. Mechanics of spark ignition and compression ignition engines.
MECG 531. Introduction to Biomechanics. 3 Credits.
Fundamental concepts and analysis of the engineering associated with human biology. Basic ideas of molecular biology, cell structure and function will be presented along with the mechanics of biological materials: ligament, muscle, and bone. Organ operation will then be examined from an engineering perspective, and will specifically address heart and lung operation. Body dynamics will also be addressed via the examination of walking gait and muscle dynamics. Finally, the engineering involved with the design and operation of artificial joints will be studied along with the instrumentation employed in bioengineering such as bio-imaging. Three credits. Cross-listed with MECH 474.
MECG 536. Applied Biofluid Mechanics. 3 Credits.
The efficient flow of water-based liquids and a number of gases in the human body is essential to life. In this course, the principles of fluid mechanics are applied to the solution of a variety of biological flows; such as, blood flow in large arteries and in the capillary bed, and air flow in the lung. Diseases caused by the interruption of normal flow patterns are also considered. Both analytical and numerical solution methods are discussed. Three credits. Cross-listed with MECH 489.
MECG 541. Special Topics. 3 Credits.
MECG 542. Data Driven Problem Solving in Mechanical Engineering. 3 Credits.
This course focuses on the implementation of data analysis to provide optimum solutions to engineering problems. The course will discuss how to; 1) visualize and classify information, 2) identify problems using data analysis and machine learning tools, 3) provide possible solutions and predict outcomes for engineering problems using data mining, and 4) design products and structures informed by data. A broad range of applications within mechanical engineering will be discussed. Three credits.
MECG 546. Manufacturing Engineering. 3 Credits.
Group projects emphasizing design for manufacturing, manufacturing system simulation, and prototype fabrication. Concurrent with projects are lectures on modern manufacturing technologies. Includes a two-hour laboratory.
MECG 548. Introduction to Robotics. 3 Credits.
The geometry and mathematical representation of rigid body motion, forward and inverse robot kinematics, robot dynamics, trajectory generation, position sensing and actuation, and the control of manipulators. Three credits.
MECG 551. Vehicle Dynamics. 3 Credits.
The focus of this course in Vehicle Dynamics are: Vehicle Subsystems, Ride, and Handling. A fundamental understanding of these areas is provided through the development, analysis and critical interpretation of vehicle models. Passenger comfort and vibrations are analyzed for vehicle ride. Suspension systems and their optimization are discussed for a quarter car model. Dynamic behavior of a vehicle on the road is analyzed for vehicle handling, with emphasis on numerical simulations using planar and rolling models. The course has a term project which involves multi-body dynamic simulations via the use of modern software. Three Credits.
MECG 605. Flight Mechanics. 3 Credits.
The operation of an aircraft as a function not only the wing but also the engine operating characteristics and overall aircraft parameters. This course develops the analysis needed to calculate flight envelop characteristics, take-off and landing parameters, engine/wing matching requirements, and basic conceptual aircraft design protocols. Three credits. Cross-listed MECH 477.
MECG 606. Design of Aerospace Structures. 3 Credits.
This course covers solid mechanics and material issues associated with the design of an aerospace structure. Students will learn how the structure of aircraft and spacecraft are designed and manufactured and how safety is incorporated at every stage. Students will also receive what are the particular structural material choices that should be made in design. Specifically, fracture mechanics and fatigue failure issues due to cyclical stresses will be reviewed. The safety philosophies used in aerospace structural design, and how they affect design choices will also be discussed. Three Credits.
MECG 608. Introduction to Aerodynamics. 3 Credits.
Pressure distribution and forces on aerodynamic shapes are predicted by using potential flow theory. Incompressible, potential flow governing equations are derived. Equations representing uniform flow, vortices, and potential flow sources are developed, and used to study velocity and pressure fields in some common external flows including airfoils. The study of boundary layers and how they affect the performance of lifting surfaces will be covered. Additionally, a panel method computer code is developed to predict pressure distribution and lift and drag forces on an arbitrary airfoil. Three Credits. Cross-listed with MECH 478.
MECG 612. Alternative Energy Systems. 3 Credits.
Second Law of Thermodynamics; discussion of systems which are not limited by heat engine efficiencies. Stirling Engines. Thermoelectric systems; electrochemistry, batteries and fuel cells. Solar energy; solar thermal and photovoltaic energy systems. Lenz’s Law, magneto-hydrodynamics. Wind power, horizontal and vertical wind turbine designs. Geothermal energy systems. Three credits.
MECG 613. Nuclear Reactor Theory and Design. 3 Credits.
An in-depth study of reactor operation and design principles; fundamentals of radiation; radiation decay; binding energy; types of interactions; shielding; radioisotopes; fission cross section; fission in a reactor as a method of generating heat; controlling fission chains; basic reactor model design principles; reactor theory; heat transfer with regards to reactor coolant and reactor fuel; reactor design safety; and nuclear reactor control including important parameter measurements on sub-critical and critical reactors. Three credits.
MECG 614. Energy Management. 3 Credits.
Energy Management examines the fundamental theories behind energy, energy conversion, fuels, power production, district energy systems, cogeneration, trigeneration, delivery systems, regulations, economics, and markets. Energy management assesses the engineering, economic, social, political, and environmental considerations of the processes, regulation, planning, and development for the energy and utility industry. Students will gain reinforcement in energy transfer and power production as well as be exposed to a first-hand experience of the economic, environmental, and regulatory considerations involved with fuel, power, and emerging technology via class projects.
MECG 615. Energy Dynamics Green Buildings II. 3 Credits.
In this course students will be engaged in the design of the building systems through a process that views systems as complete assemblies with design relationships to other systems (man made and natural/internal and external). The content of the course will emphasis the tectonic aspects of architecture; however, other aspects such as the technology and methods for maintaining comfort conditions and ecological balance within the buildings will be reviewed with an emphasis on high performance sustainable design, human comfort, social responsibility, ecology, and sustainability. Issues associated with LEED certification will be addressed; energy system analysis programs will be used to optimize a building performance. Three credits.
MECG 617. Solar Energy Sys Theor&Desgn. 3 Credits.
Study of solar energy systems with emphasis in solar heating and cooling of buildings; design of various types of solar collectors using different materials, working fluids, and geometries; energy storage systems for solar assisted heat pumps; use of solar energy in power generation. Three credits.
MECG 620. Applications of Instrumentation and Data Acquisition. 3 Credits.
Operation, application, and selection of engineering instruments for measuring common engineering variables, e.g. position, velocity, temperatures, pH, force, pressure, strain, flow rate, light intensity, concentration, etc; sensors, data acquisition and processing. Output devices, including logic and actuator operation and selection. Computer-based data acquisition and automated analysis are considered.
Cross-listed with MECH 487.
MECG 621. Advanced Mechatronics. 3 Credits.
This course is designed to provide students with the knowledge and experience to design and build mechatronic systems. The course covers basic transducer operation, controller design and programming, a-to-d and d-to-a issues, and motor selection and use. The course also introduces the students to basic programmable logic controller (PLC) systems and ladder logic.Pre-Req:MECH312.
MECG 627. Applied Solid Mechanics. 3 Credits.
Techniques are developed that allow the analysis of general continuous materials. In particular, these methods will be used to study issues associated with biological materials, metallic creep, and the visco-elastic behavior of polymers. A simplified version of the analysis is then used to study the stresses and strain in linearly elastic materials to allow the study of MEMS. Finite element techniques are also developed to allow general nonlinear problems to be solved. All of this material is used to study a specific engineering scenario via a class project. Three credits.
MECG 630. Control Sys Theor&Applictions. 3 Credits.
System model formulation; transfer functions and block diagrams; linear control and feedback systems; root-locus method will be covered along with control hardware and schematic diagrams. Case studies and applications to various engineering systems will be used to introduce students to the principles of control system design. Three credits.
MECG 631. Biomechanics Modeling and Applications. 3 Credits.
A rigorous examination of the various components of the human body is covered. These include structural elements such as bones, ligaments, muscles, and the brain. The mechanical properties and behavior of these materials are studied with emphasis being placed on the response of these materials to different loading scenarios. Also, fluid mechanic elements such as the cardio-vascular system and the respiratory system are examined to characterize the interaction between the fluid and organ operation. Particular attention will be paid to the modelling of different parts of the human body via FEA/CFD analysis using nonlinear behavior and material properties. Three credits.
MECG 642. Artificial Intelligence Applications in Mechanical Engineering. 3 Credits.
This course will familiarize students with a broad cross-section of models and algorithms in this field. The course will discuss classification algorithms and regression and clustering techniques. The course will include several examples of engineering problems such as Design of Machine Elements, Biomechanics, Additive Manufacturing and 3D printing and Autonomous Vehicles. Three credits.
MECG 676. Sustainable Materials Selectn. 3 Credits.
The first half of the class covers basic material selection issues such as material characteristics, and behavior for all types of engineering materials (metals, polymers, ceramics/glasses, and composites), along with how they fail and respond to environmental conditions (e.g. corrosion). In the second half of the class attention will be paid to material selection with particular emphasis being placed on ecological considerations such as recycling, reusability, carbon footprints, and pollution issues. Three credits.
MECG 701. Viscous Flow Theory. 3 Credits.
Development of the Navier-Stokes equation; solutions for special cases. Dimensionless forms; low and high Reynolds number forms. Boundary layer theory (similarity solution); Application to flow over a flat plate, and flow in ducts. Introduction to potential theory.
MECG 702. Compressible Flow. 3 Credits.
Linearized sub- and supersonic flow past slender bodies. One- and two-dimensional and axisymmetric flows, including normal and oblique shocks. Similarity laws. Method of characteristics.
MECG 704. Computational Fluid Mechanics. 3 Credits.
Study of numerical methods in fluid mechanics including: finite differencing, numerical errors and stability, nonlinear convection terms, boundary conditions, and turbulence.
MECG 706. Advanced Engineering Thermodynamics. 3 Credits.
First and second law analysis of engineering systems; exergy and irreversibility; equations of state and properties of working fluids, including real gases; thermodynamics of chemically-reacting systems; multi-phase and multi-component systems in thermodynamic equilibrium. Three credits.
MECG 707. Conduction Heat Transfer. 3 Credits.
Development of basic equations of heat conduction; analytical and numerical solutions of transient and steady state temperature distributions in solids; applications involving heat generation and varying physical properties. Computer projects.
MECG 708. Convection Heat Transfer. 3 Credits.
Continuity, momentum, and energy equations for engineering fluids; exact and approximate solutions for laminar and turbulent flows; free and forced convection, boiling and condensation; selected applications.
MECG 709. Radiation Heat Transfer. 3 Credits.
Black body and non-black surface radiation; radiative properties of real materials; configuration factors; multi-face radiation exchange in enclosures; radiative transfer in participating and radiative properties of gases; application to problems involving convection and radiation.
MECG 714. Computer Aided Engineering. 3 Credits.
Advanced applications of computer aided engineering software. Topics covered will include FE analysis (with applications in solid, thermal, and fluid mechanics), buckling, endurance, vibration analysis, dynamic modeling, and manufacturing simulation. Computer optimization techniques and practical applications will also be covered. Several class projects will be given using software packages such as NX, Abaqus, and Comsol. Three credits.
MECG 720. Robotics and Automation. 3 Credits.
Introduction to robotics and automation; flow-line production; numerical control and CAD/CAM; group technology and flexible manufacturing systems; robotic industrial application; robot decision making; programmable robotic automation.
MECG 734. Operation Research. 3 Credits.
Presentation of the analysis associated with managing manufacturing operations. Topics covered will be decision-making, forecasting, materials requirement planning, queuing, project management, and aggregate planning.
MECG 735. Theory of Vibration. 3 Credits.
Concepts underlying the dynamics of vibrations for single-degree of freedom and multi-degree of freedom mechanical systems, the use of Newtonian, virtual-work, and Lagrangian variation methods for analyzing vibrating systems for transient, steady state, and forced single and multi-degree of freedom linear system, an introduction to non-linear systems, and the use of numerical and simulation techniques. Three credits.
MECG 736. Design Machine Elements. 3 Credits.
Strain energy method for analyzing statistically indeterminate machine members; theories of failure; fatigue; optimum design of machine elements; stress waves and impact loading, critical speed. Finite element modeling of various machine members.
MECG 738. Advanced Dynamics. 3 Credits.
Kinematics, formulation of equations of motion for a particle, system of particles and rigid bodies, holonomic conservative and non-conservative systems, work-energy principles, three dimensional motion of rigid bodies, Lagrangian methods, and the Hamilton methods. Three credits.
MECG 741. Special Topics: in Mechanical Engineering. 3 Credits.
Special topics in mechanical engineering of current interest to graduate students; subject matter will be announced in advance of particular semester offering.
MECG 742. Advanced Study: Mechanical Engineering. 3 Credits.
Individual study of a selected topic in mechanical engineering under the supervision of a faculty member.
Prerequisite: Advisor's approval of topic.
MECG 744. Seminar. 1 Credit.
MECG 746. Research Project in Mechanical Engineering. 3-6 Credit.
Research project under the supervision of a faculty member. A project proposal, approved by the faculty advisor and the graduate program director, must be submitted. A final written report and oral presentation are required. May be extended to thesis with faculty advisor’s recommendation and the approval of the Graduate Program Director. Variable credits(3-6).
MECG 748. Thesis in Mechanical Engineering. 6 Credits.
Original investigation or design in field of mechanical engineering; topic is to be chosen by student with approval of faculty advisor and the graduate program director; written report and oral presentation required. Prerequisite: Advisor’s approval of topic. Six credits.