pause world-wide-web instagram volume-medium linkedin flickr basketball devices home pencil person-money rss slider-left-arrow slider-right-arrow slider-left-arrow slider-right-arrow star video-transcript close hamburger minus plus account arrow certificate city globe graduation-cap graph handshake info info-2 map play search snapchat twitter facebook file-text-o youtube tumblr camera file-text

Mechanical Engineering

Dr. Parisa Saboori
Chair, Department of Mechanical Engineering

Dr. Bahman Litkouhi, P.E.
Director, Graduate Program

Mission

The Master of Science in Mechanical Engineering degree program is designed to provide a contemporary, educational experience beyond that of undergraduate education characterized by high academic standards, reflection on values and principles, and preparation for a lifelong career. It is intended to prepare individuals for advanced technical positions or for admission to doctoral programs.

Objectives

The objectives of the program are:

  • To provide graduate students with in-depth knowledge and practices in mechanical engineering related to a chosen area of specialization.
  • To develop an appreciation of how mechanical engineering is practiced in the modern engineering environment with an emphasis on communication skills and professional behavior and procedures.
  • To inspire the students to become life-long learners by providing them with the tools to explore and research a topic independently and systematically.

Admission Requirements

Applicants must possess one of the following:

  1. A baccalaureate degree in mechanical engineering from a program accredited by the Engineering Accreditation Commission of ABET, Inc., or from a recognized foreign institution.
  2. A baccalaureate degree in another area of engineering, physics, or mathematics.

Applicants who have a baccalaureate degree in another area of engineering, physics, or mathematics may be admitted into the program provided they complete undergraduate prerequisites specified by the Department Graduate Program Director. These courses must be completed with a minimum grade point average of 3.00 with no grade lower than C. These courses will not satisfy any requirements for the Master of Science in Mechanical Engineering degree.

Generally, students must complete prerequisite courses before they are permitted to register for graduate courses. Exceptions require the recommendation of the Graduate Program Director and the approval of the Dean of Engineering.

Degree Requirements

A student must complete a minimum thirty credit hours of graduate coursework, including ENGG 614 Engineering Mathematics. Except for students enrolled in the Seamless Master's program, a maximum of four 500-level courses may be credited to the MS degree. Students enrolled in the Seamless Master's program may receive credit for a maximum of five 500-level courses. Either MECG 742 Advanced Study: Mechanical Engineering or MECG 748 Thesis in Mechanical Engineering may be undertaken by a student who has successfully completed nine credits as a matriculated graduate student. A proposal approved by the Graduate Program Director is required before a student may register for either of these courses. Electives may also be selected from Graduate Core courses with the advice and approval of the Graduate Program Director.

Concentration Programs 

Concentration programs, which consist of prescribed courses in a specific concentration area, are available through the Mechanical engineering graduate program as follows: Artificial Intelligence in Mechanical Engineering, Biomechanics, Engineering Management, Energy Systems, Nuclear Power, Green Building Engineering, Aerospace/Propulsion, Systems/Control, and Solid Mechanics/Design. Unless otherwise noted, courses in these programs may be applied to a Master's of Science Degree in Mechanical Engineering. While approval of the Graduate Program Director is required to enroll in a graduate course, admission to the Graduate Program is not required to participate in a Concentration Program. It is expected, however, that individuals desiring to take graduate-level courses in a Concentration Program will have a baccalaureate degree in either an engineering field, a science or applied science field, or mathematics, and will meet the pre-requisite requirements of the courses they wish to take in a Concentration Program. Specific information regarding Graduate Mechanical Engineering Concentrations is available on the Mechanical Engineering website.

Courses

MECG 512. Energy Conversion. 3 Credits.

Overview of thermodynamic concepts, application of first and second laws of thermodynamics to improve efficiency of gas turbines and power generation systems, combustion of hydrocarbon fuels, reacting systems, conventional and innovative energy conversion applications such as solar, wind, wave, tidal, ocean thermal, and geothermal energy. Three credits.

MECG 513. Introduction to Nuclear Power Plant systems. 3 Credits.

Study of current in-service nuclear plant design, including nuclear plant reactor, reactor auxiliaries, secondary steam plant, and electrical systems; review of the design bases for major systems and components in current operating nuclear plants; evaluation of how the systems function in an integrated fashion. Case studies are used to explore historical engineering and operational issues. New vendor nuclear plant designs are explored and compared to current designs. Three credits Cross-listed with: MECH 471.

MECG 515. Energy Dynamics of Green Building I. 3 Credits.

The course emphasizes understanding the impact that various environmental systems have on the building design and operation process. Site and climate analysis will be the starting point for defining performance criteria of the built environment. Students will be introduced to analysis tools for interpreting weather data and the fundamentals of occupant comfort. Criteria used to define internal environmental conditions will be discussed as design goal to which all building elements must strive to achieve through systems integration. Three credits.

MECG 516. Turbomachinery. 3 Credits.

Review of fundamentals of fluid mechanics, dimensional analysis in fluid machinery; classification and characteristics of fluid machinery (positive displacement, radial, mixed flow and axial); efficiencies; incompressible flow machines (pumps and hydraulic turbines); cavitation; compressible flow machines (compressors and gas turbines); choking and surge. Cross-listed with MECH 488.

MECG 525. Analysis and Design Hvac Systems. 3 Credits.

Indoor air quality and human comfort, economy and environmental protection requirements. Heating and cooling loads. Introduction to equipment selection and system analysis.

MECG 528. Combustion Systems. 3 Credits.

Basic Cycles for spark ignition and compression ignition engines. Combustion chemistry, flame temperataures, fuels and heating values. Actual versus ideal cycles, equilibrium charts, knock and engine variables. Mechanics of spark ignition and compression ignition engines.

MECG 531. Introduction to Biomechanics. 3 Credits.

Fundamental concepts and analysis of the engineering associated with human biology. Basic ideas of molecular biology, cell structure and function will be presented along with the mechanics of biological materials: ligament, muscle, and bone. Organ operation will then be examined from an engineering perspective, and will specifically address heart and lung operation. Body dynamics will also be addressed via the examination of walking gait and muscle dynamics. Finally, the engineering involved with the design and operation of artificial joints will be studied along with the instrumentation employed in bioengineering such as bio-imaging. Three credits. Cross-listed with MECH 474.

MECG 536. Applied Biofluid Mechanics. 3 Credits.

The efficient flow of water-based liquids and a number of gases in the human body is essential to life. In this course, the principles of fluid mechanics are applied to the solution of a variety of biological flows; such as, blood flow in large arteries and in the capillary bed, and air flow in the lung. Diseases caused by the interruption of normal flow patterns are also considered. Both analytical and numerical solution methods are discussed. Three credits. Cross-listed with MECH 489.

MECG 541. Special Topics. 3 Credits.

MECG 542. Data Driven Problem Solving in Mechanical Engineering. 3 Credits.

This course focuses on the implementation of data analysis to provide optimum solutions to engineering problems. The course will discuss how to; 1) visualize and classify information, 2) identify problems using data analysis and machine learning tools, 3) provide possible solutions and predict outcomes for engineering problems using data mining, and 4) design products and structures informed by data. A broad range of applications within mechanical engineering will be discussed. Three credits.

MECG 546. Manufacturing Engineering. 3 Credits.

Group projects emphasizing design for manufacturing, manufacturing system simulation, and prototype fabrication. Concurrent with projects are lectures on modern manufacturing technologies. Includes a two-hour laboratory.

MECG 548. Introduction to Robotics. 3 Credits.

The geometry and mathematical representation of rigid body motion, forward and inverse robot kinematics, robot dynamics, trajectory generation, position sensing and actuation, and the control of manipulators. Three credits.

MECG 551. Vehicle Dynamics. 3 Credits.

The focus of this course in Vehicle Dynamics are: Vehicle Subsystems, Ride, and Handling. A fundamental understanding of these areas is provided through the development, analysis and critical interpretation of vehicle models. Passenger comfort and vibrations are analyzed for vehicle ride. Suspension systems and their optimization are discussed for a quarter car model. Dynamic behavior of a vehicle on the road is analyzed for vehicle handling, with emphasis on numerical simulations using planar and rolling models. The course has a term project which involves multi-body dynamic simulations via the use of modern software. Three Credits.

MECG 605. Flight Mechanics. 3 Credits.

The operation of an aircraft as a function not only the wing but also the engine operating characteristics and overall aircraft parameters. This course develops the analysis needed to calculate flight envelop characteristics, take-off and landing parameters, engine/wing matching requirements, and basic conceptual aircraft design protocols. Three credits. Cross-listed MECH 477.

MECG 606. Design of Aerospace Structures. 3 Credits.

This course covers solid mechanics and material issues associated with the design of an aerospace structure. Students will learn how the structure of aircraft and spacecraft are designed and manufactured and how safety is incorporated at every stage. Students will also receive what are the particular structural material choices that should be made in design. Specifically, fracture mechanics and fatigue failure issues due to cyclical stresses will be reviewed. The safety philosophies used in aerospace structural design, and how they affect design choices will also be discussed. Three Credits.

MECG 608. Introduction to Aerodynamics. 3 Credits.

Pressure distribution and forces on aerodynamic shapes are predicted by using potential flow theory. Incompressible, potential flow governing equations are derived. Equations representing uniform flow, vortices, and potential flow sources are developed, and used to study velocity and pressure fields in some common external flows including airfoils. The study of boundary layers and how they affect the performance of lifting surfaces will be covered. Additionally, a panel method computer code is developed to predict pressure distribution and lift and drag forces on an arbitrary airfoil. Three Credits. Cross-listed with MECH 478.

MECG 612. Alternative Energy Systems. 3 Credits.

Second Law of Thermodynamics; discussion of systems which are not limited by heat engine efficiencies. Stirling Engines. Thermoelectric systems; electrochemistry, batteries and fuel cells. Solar energy; solar thermal and photovoltaic energy systems. Lenz’s Law, magneto-hydrodynamics. Wind power, horizontal and vertical wind turbine designs. Geothermal energy systems. Three credits.

MECG 613. Nuclear Reactor Theory and Design. 3 Credits.

An in-depth study of reactor operation and design principles; fundamentals of radiation; radiation decay; binding energy; types of interactions; shielding; radioisotopes; fission cross section; fission in a reactor as a method of generating heat; controlling fission chains; basic reactor model design principles; reactor theory; heat transfer with regards to reactor coolant and reactor fuel; reactor design safety; and nuclear reactor control including important parameter measurements on sub-critical and critical reactors. Three credits.

MECG 614. Energy Management. 3 Credits.

Energy Management examines the fundamental theories behind energy, energy conversion, fuels, power production, district energy systems, cogeneration, trigeneration, delivery systems, regulations, economics, and markets. Energy management assesses the engineering, economic, social, political, and environmental considerations of the processes, regulation, planning, and development for the energy and utility industry. Students will gain reinforcement in energy transfer and power production as well as be exposed to a first-hand experience of the economic, environmental, and regulatory considerations involved with fuel, power, and emerging technology via class projects.

MECG 615. Energy Dynamics Green Buildings II. 3 Credits.

In this course students will be engaged in the design of the building systems through a process that views systems as complete assemblies with design relationships to other systems (man made and natural/internal and external). The content of the course will emphasis the tectonic aspects of architecture; however, other aspects such as the technology and methods for maintaining comfort conditions and ecological balance within the buildings will be reviewed with an emphasis on high performance sustainable design, human comfort, social responsibility, ecology, and sustainability. Issues associated with LEED certification will be addressed; energy system analysis programs will be used to optimize a building performance. Three credits.

MECG 617. Solar Energy Sys Theor&Desgn. 3 Credits.

Study of solar energy systems with emphasis in solar heating and cooling of buildings; design of various types of solar collectors using different materials, working fluids, and geometries; energy storage systems for solar assisted heat pumps; use of solar energy in power generation. Three credits.

MECG 620. Applications of Instrumentation and Data Acquisition. 3 Credits.

Operation, application, and selection of engineering instruments for measuring common engineering variables, e.g. position, velocity, temperatures, pH, force, pressure, strain, flow rate, light intensity, concentration, etc; sensors, data acquisition and processing. Output devices, including logic and actuator operation and selection. Computer-based data acquisition and automated analysis are considered. Cross-listed with MECH 487.

MECG 621. Advanced Mechatronics. 3 Credits.

This course is designed to provide students with the knowledge and experience to design and build mechatronic systems. The course covers basic transducer operation, controller design and programming, a-to-d and d-to-a issues, and motor selection and use. The course also introduces the students to basic programmable logic controller (PLC) systems and ladder logic.Pre-Req:MECH312.

MECG 627. Applied Solid Mechanics. 3 Credits.

Techniques are developed that allow the analysis of general continuous materials. In particular, these methods will be used to study issues associated with biological materials, metallic creep, and the visco-elastic behavior of polymers. A simplified version of the analysis is then used to study the stresses and strain in linearly elastic materials to allow the study of MEMS. Finite element techniques are also developed to allow general nonlinear problems to be solved. All of this material is used to study a specific engineering scenario via a class project. Three credits.

MECG 630. Control Sys Theor&Applictions. 3 Credits.

System model formulation; transfer functions and block diagrams; linear control and feedback systems; root-locus method will be covered along with control hardware and schematic diagrams. Case studies and applications to various engineering systems will be used to introduce students to the principles of control system design. Three credits.

MECG 631. Biomechanics Modeling and Applications. 3 Credits.

A rigorous examination of the various components of the human body is covered. These include structural elements such as bones, ligaments, muscles, and the brain. The mechanical properties and behavior of these materials are studied with emphasis being placed on the response of these materials to different loading scenarios. Also, fluid mechanic elements such as the cardio-vascular system and the respiratory system are examined to characterize the interaction between the fluid and organ operation. Particular attention will be paid to the modelling of different parts of the human body via FEA/CFD analysis using nonlinear behavior and material properties. Three credits.

MECG 642. Artificial Intelligence Applications in Mechanical Engineering. 3 Credits.

This course will familiarize students with a broad cross-section of models and algorithms in this field. The course will discuss classification algorithms and regression and clustering techniques. The course will include several examples of engineering problems such as Design of Machine Elements, Biomechanics, Additive Manufacturing and 3D printing and Autonomous Vehicles. Three credits.

MECG 676. Sustainable Materials Selectn. 3 Credits.

The first half of the class covers basic material selection issues such as material characteristics, and behavior for all types of engineering materials (metals, polymers, ceramics/glasses, and composites), along with how they fail and respond to environmental conditions (e.g. corrosion). In the second half of the class attention will be paid to material selection with particular emphasis being placed on ecological considerations such as recycling, reusability, carbon footprints, and pollution issues. Three credits.

MECG 701. Viscous Flow Theory. 3 Credits.

Development of the Navier-Stokes equation; solutions for special cases. Dimensionless forms; low and high Reynolds number forms. Boundary layer theory (similarity solution); Application to flow over a flat plate, and flow in ducts. Introduction to potential theory.

MECG 702. Compressible Flow. 3 Credits.

Linearized sub- and supersonic flow past slender bodies. One- and two-dimensional and axisymmetric flows, including normal and oblique shocks. Similarity laws. Method of characteristics.

MECG 704. Computational Fluid Mechanics. 3 Credits.

Study of numerical methods in fluid mechanics including: finite differencing, numerical errors and stability, nonlinear convection terms, boundary conditions, and turbulence.

MECG 706. Advanced Engineering Thermodynamics. 3 Credits.

First and second law analysis of engineering systems; exergy and irreversibility; equations of state and properties of working fluids, including real gases; thermodynamics of chemically-reacting systems; multi-phase and multi-component systems in thermodynamic equilibrium. Three credits.

MECG 707. Conduction Heat Transfer. 3 Credits.

Development of basic equations of heat conduction; analytical and numerical solutions of transient and steady state temperature distributions in solids; applications involving heat generation and varying physical properties. Computer projects.

MECG 708. Convection Heat Transfer. 3 Credits.

Continuity, momentum, and energy equations for engineering fluids; exact and approximate solutions for laminar and turbulent flows; free and forced convection, boiling and condensation; selected applications.

MECG 709. Radiation Heat Transfer. 3 Credits.

Black body and non-black surface radiation; radiative properties of real materials; configuration factors; multi-face radiation exchange in enclosures; radiative transfer in participating and radiative properties of gases; application to problems involving convection and radiation.

MECG 714. Computer Aided Engineering. 3 Credits.

Advanced applications of computer aided engineering software. Topics covered will include FE analysis (with applications in solid, thermal, and fluid mechanics), buckling, endurance, vibration analysis, dynamic modeling, and manufacturing simulation. Computer optimization techniques and practical applications will also be covered. Several class projects will be given using software packages such as NX, Abaqus, and Comsol. Three credits.

MECG 720. Robotics and Automation. 3 Credits.

Introduction to robotics and automation; flow-line production; numerical control and CAD/CAM; group technology and flexible manufacturing systems; robotic industrial application; robot decision making; programmable robotic automation.

MECG 734. Operation Research. 3 Credits.

Presentation of the analysis associated with managing manufacturing operations. Topics covered will be decision-making, forecasting, materials requirement planning, queuing, project management, and aggregate planning.

MECG 735. Theory of Vibration. 3 Credits.

Concepts underlying the dynamics of vibrations for single-degree of freedom and multi-degree of freedom mechanical systems, the use of Newtonian, virtual-work, and Lagrangian variation methods for analyzing vibrating systems for transient, steady state, and forced single and multi-degree of freedom linear system, an introduction to non-linear systems, and the use of numerical and simulation techniques. Three credits.

MECG 736. Design Machine Elements. 3 Credits.

Strain energy method for analyzing statistically indeterminate machine members; theories of failure; fatigue; optimum design of machine elements; stress waves and impact loading, critical speed. Finite element modeling of various machine members.

MECG 738. Advanced Dynamics. 3 Credits.

Kinematics, formulation of equations of motion for a particle, system of particles and rigid bodies, holonomic conservative and non-conservative systems, work-energy principles, three dimensional motion of rigid bodies, Lagrangian methods, and the Hamilton methods. Three credits.

MECG 741. Special Topics: in Mechanical Engineering. 3 Credits.

Special topics in mechanical engineering of current interest to graduate students; subject matter will be announced in advance of particular semester offering.

MECG 742. Advanced Study: Mechanical Engineering. 3 Credits.

Individual study of a selected topic in mechanical engineering under the supervision of a faculty member. Prerequisite: Advisor's approval of topic.

MECG 744. Seminar. 1 Credit.

MECG 746. Research Project in Mechanical Engineering. 3-6 Credit.

Research project under the supervision of a faculty member. A project proposal, approved by the faculty advisor and the graduate program director, must be submitted. A final written report and oral presentation are required. May be extended to thesis with faculty advisor’s recommendation and the approval of the Graduate Program Director. Variable credits(3-6).

MECG 748. Thesis in Mechanical Engineering. 6 Credits.

Original investigation or design in field of mechanical engineering; topic is to be chosen by student with approval of faculty advisor and the graduate program director; written report and oral presentation required. Prerequisite: Advisor’s approval of topic. Six credits.